首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background: Several in situ gel-forming systems have been developed to prolong the precorneal residence time of a drug and to improve ocular bioavailability. Poloxamer 407 with its thermoreversible gelation and surface active properties was utilized to formulate a novel dorzolamide hydrochloride in situ gel nanoemulsion (NE) delivery system for ocular use. Objective: Improvement of both ocular bioavailability and duration of action for dorzolamide hydrochloride was the aim of this study. Methods: Physicochemical properties, in vitro drug release studies and biological evaluation of the prepared NEs were investigated. Results: The optimum formulation of in situ gel NE consisted of Triacetin (7.80%), Poloxamer 407 (13.65%), Poloxamer 188 (3.41%), Miranol C2M (4.55%), and water (70.59%). Biological evaluation of the designed dorzolamide formulation on normotensive albino rabbits indicated that this formulation had better biological performance, faster onset of action, and prolonged effect relative to either drug solution or the market product. The formula showed a superior pharmacodynamic activity compared to the in situ gel dorzolamide eye drops. This indicated the effectiveness of the in situ gel properties of poloxamer 407, besides formulating the drug in an NE form for improving the therapeutic efficacy of the drug. Conclusion: These results demonstrate the superiority of in situ gel NE to conventional ocular eye drops and in situ gels to enhance ocular drug bioavailability.  相似文献   

2.
To prolong the precorneal resident time and improve ocular bioavailability of the drug, Pluronic-g-poly(acrylic acid) copolymers were studied as a temperature-responsive in situ gelling vehicle for an ophthalmic drug delivery system. The rheological properties and in vitro drug release of Pluronic-g-PAA copolymer gels, as well as the in vivo resident properties of such in situ gel ophthalmic formulations, were investigated. The rheogram and in vitro drug release studies indicated that the drug release rates decreased as acrylic acid/Pluronic molar ratio and copolymer solution concentration increased. It was also shown that the drug concentration had no obvious effect on drug release. The release rates of drug from such copolymer gels were mainly dependent on the gel dissolution. In vivo resident experiments showed the drug resident time and the total resident amount increased by 4-fold and 1.2-fold for in situ gel compared with eye drops. These in vivo experimental results, along with the rheological properties and in vitro drug release studies, demonstrated that in situ gels containing Pluronic-g-PAA copolymer may significantly prolong the drug resident time and thus improve bioavailability. The results showed that the Pluronic-g-PAA copolymer can be a promising in situ gelling vehicle for ophthalmic drug delivery.  相似文献   

3.
The aim of this study was to enhance the delivery of resveratrol to the brain through the transnasal route by cubosomes. Cubosomes were prepared using glycerol monooleate and Lutrol F127 by probe sonication method. A 32 full factorial design was used for optimization of cubosomes and batch containing 4% w/v glycerol monooleate and 1.5% w/v of Lutrol F 127 was optimized. The selected cubosomal batch was cubical in shape, having mean particle size 161.5?±?0.12?nm. Entrapment efficiency was found to be 83.08% with zeta potential of –20.9?mV. In vitro release of cubosomal batch showed controlled release of drug profile (67%) up to 24?h. The optimized cubosomal dispersion was dispersed into gelling polymer (poloxamer 407) to form in situ gel for nasal use. The optimal cubosomal gel (containing 12% w/v poloxamer 407) had been subjected to ex-vivo permeation and in vivo biodistribution studies. It showed significantly higher transnasal permeation and better distribution to brain, when compared to the drug solution (i.n.) and drug solution (oral). Finally the cubosomal gel could be considered as a promising carrier for brain targeting of Resveratrol (Res) through transnasal route.  相似文献   

4.
The purpose of this study was to develop poloxamer-based in situ gelling formulations of ciprofloxacin hydrochloride (HCl) aiming at prolonging corneal contact time, controlling drug release, enhancing ocular bioavailability, and increasing patient compliance. The in situ forming gels were prepared using different concentrations of poloxamer 407 (P407) and poloxamer 188 (P188). Mucoadhesives such as hydroxypropylmethyl cellulose (HPMC) or hydroxyethyl cellulose (HEC) were added to the formulations to enhance the gel bioadhesion properties. The prepared formulations were evaluated for their in vitro drug release, sol–gel transition temperature, rheological behavior, and mucoadhesion force. The in vivo antimicrobial efficacy of selected ciprofloxacin HCl in situ gelling formulations was studied on infected rabbit's eyes and compared with that of the marketed conventional eye drops. The gelation temperature of the prepared formulations ranged from 28.00 to 34.03°C. Increasing the concentrations of P407, HPMC, and HEC increased the viscosity and mucoadhesion force of the preparations and decreased the in vitro drug release. Ciprofloxacin HCl in situ forming gel formulae composed of P407/P188/HPMC (18/13/1.5%, wt/wt), and P407/P188/HEC (18/13/0.5%, wt/wt) showed optimum release and mucoadhesion properties and improved ocular bioavailability as evidenced by an enhanced therapeutic response compared with the marketed conventional eye drops.  相似文献   

5.
Ocular poloxamer-based ciprofloxacin hydrochloride in situ forming gels   总被引:1,自引:0,他引:1  
The purpose of this study was to develop poloxamer-based in situ gelling formulations of ciprofloxacin hydrochloride (HCl) aiming at prolonging corneal contact time, controlling drug release, enhancing ocular bioavailability, and increasing patient compliance. The in situ forming gels were prepared using different concentrations of poloxamer 407 (P407) and poloxamer 188 (P188). Mucoadhesives such as hydroxypropylmethyl cellulose (HPMC) or hydroxyethyl cellulose (HEC) were added to the formulations to enhance the gel bioadhesion properties. The prepared formulations were evaluated for their in vitro drug release, sol-gel transition temperature, rheological behavior, and mucoadhesion force. The in vivo antimicrobial efficacy of selected ciprofloxacin HCl in situ gelling formulations was studied on infected rabbit's eyes and compared with that of the marketed conventional eye drops. The gelation temperature of the prepared formulations ranged from 28.00 to 34.03 degrees C. Increasing the concentrations of P407, HPMC, and HEC increased the viscosity and mucoadhesion force of the preparations and decreased the in vitro drug release. Ciprofloxacin HCl in situ forming gel formulae composed of P407/P188/HPMC (18/13/1.5%, wt/wt), and P407/P188/HEC (18/13/0.5%, wt/wt) showed optimum release and mucoadhesion properties and improved ocular bioavailability as evidenced by an enhanced therapeutic response compared with the marketed conventional eye drops.  相似文献   

6.
ABSTRACT

The aim of this study was to evaluate the potential of an in situ gelling pectin formulation as a vehicle for the oral sustained delivery of theophylline and cimetidine. In vitro studies demonstrated diffusion-controlled release of theophylline from 1, 1.5, and 2% w/v pectin gels. Release of this drug from 1.5% w/v pectin gels formed in situ in rabbit stomach was sustained over a period of 12 hours giving a theophylline bioavailability some seven fold higher than when administered from a commercial syrup. In contrast, interactions between cimetidine and pectin led to weak gelation of the pectin sols that prevented any meaningful determination of in vitro release characteristics. Similarly, in vivo release profiles from pectin formulations containing cimetidine were similar to that from a solution of this drug in buffer, indicative of weak gelation. Examination of the content of the rabbit stomach 5 hours after administration of 1.5% w/v pectin sols containing drug confirmed gel formation, but gels containing cimetidine were noticeably softer than those containing theophylline.  相似文献   

7.
Context: Alternative strategies are being employed to develop liquid oral sustained release formulation. These included ion exchange resin, sustained release suspensions and in situ gelling systems. The later mainly utilizes alginate solutions that form gels upon contact with calcium which may be administered separately or included in the alginate solution as citrate complex. This complex liberates calcium in the stomach with subsequent gellation. The formed gel can break after gastric emptying leading to dose dumping.

Objective: Development of modified in situ gelling system which sustain dextromethorphan release in the stomach and intestine.

Methods: Solutions containing alginate with calcium chloride and sodium citrate were initially prepared to select the formulation sustaining the release in the stomach. The best formulation was combined with chitosan. All formulations were characterized with respect to flow, gelling capacity, gelling strength and drug release.

Results: Increasing the concentration of alginate increased the gelling capacity and strength and reduced the rate of drug release in gastric conditions with 2% w/v alginate being the best formulation. However, these formulations failed to sustain the release in the intestinal conditions. Incorporation of chitosan with alginate increased the gelling capacity and strength and reduced the rate of drug release compared to alginate only system. The effect was optimum in formulation containing 1.5% w/v chitosan. The sustained release pattern was maintained both in the gastric and intestinal conditions and was comparable to that obtained from the marketed product.

Conclusion: Alginate-chitosan based in situ gelling system is promising for developing liquid oral sustained release.  相似文献   

8.
The aim of this study was to evaluate the potential of an in situ gelling pectin formulation as a vehicle for the oral sustained delivery of theophylline and cimetidine. In vitro studies demonstrated diffusion-controlled release of theophylline from 1, 1.5, and 2% w/v pectin gels. Release of this drug from 1.5% w/v pectin gels formed in situ in rabbit stomach was sustained over a period of 12 hours giving a theophylline bioavailability some seven fold higher than when administered from a commercial syrup. In contrast, interactions between cimetidine and pectin led to weak gelation of the pectin sols that prevented any meaningful determination of in vitro release characteristics. Similarly, in vivo release profiles from pectin formulations containing cimetidine were similar to that from a solution of this drug in buffer, indicative of weak gelation. Examination of the content of the rabbit stomach 5 hours after administration of 1.5% w/v pectin sols containing drug confirmed gel formation, but gels containing cimetidine were noticeably softer than those containing theophylline.  相似文献   

9.
Background: The ability of poloxamer 407 to control drug release was investigated along with the effect of incorporation of a second polymer with poloxamer on dissolution behavior. Methods: Tablets made of 30% w/w/ theophylline and 15%, 25%, 50%, or 69% poloxamer were prepared. Additionally, tablets containing mixture of poloxamer with carbomer or hypromellose in a 1:1 ratio and at different total levels (15%, 30%, and 50%) were also tested. Results: Data show that as the level of poloxamer increased, drug release decreased. Formulations containing poloxamer: hypromellose 1:1 at 50% level and formulations containing poloxamer: carbomer 1:1 at 30% level produced controlled release matrices over 24 hours of testing dissolution. The mechanism of drug release follows anomalous relaxation non-Fickian diffusion model. Conclusions: These results suggest that the combination of poloxamer 407 with hypromellose or carbomer is feasible and has potential to offer the formulator control over drug release.  相似文献   

10.
Context: The conventional liquid ophthalmic delivery systems exhibit short pre-corneal residence time and the relative impermeability to the cornea which leads to poor ocular bioavailability.

Objective: The aim of this study was to apply quality by design (QbD) for development of dexamethasone sodium phosphate (DSP) and tobramycin sulfate (TS)-loaded thermoresponsive ophthalmic in situ gel containing Poloxamer 407 and hydroxyl propyl methyl cellulose (HPMC) K4M for prolonging the pre-corneal residence time, ocular bioavability and decreases the frequency of administration of dosage form. The material attributes and the critical quality attributes (CQA) of the in situ gel were identified. Central composite design (CCD) was adopted to optimize the formulation.

Materials and methods: The ophthalmic in situ forming gels were prepared by cold method. Materials attributes were the amount of Poloxamer 407 and HPMC and CQA identified were Gel strength, mucoadhesive index, gelation temperature and % of drug release of both drug.

Results and discussion: Optimized batch (F*) containing 16.75% poloxamer 407 and 0.54% HPMC K4M were exhibited all results in acceptable limits. Compared with the marketed formulation, optimized in situ gel showed delayed Tmax, improved Cmax and AUC in rabbit aqueous humor, suggesting the sustained drug release and better corneal penetration and absorption.

Conclusion: According to the study, it could be concluded that DSP and TS would be successfully formulated as in situ gelling mucoadhesive system for the treatment of steroid responsive eye infections with the properties of sustained drug release, prolonged ocular retention and improved corneal penetration.  相似文献   


11.
Background: Oral-sustained release gel formulations with suitable rheological properties have been proposed as a means of improving the compliance of dysphagic and geriatric patients who have difficulties with handling and swallowing oral dosage forms. Aim: We have modified the rheological and release properties of thermally reversible methylcellulose solutions by admixture with pectin, the gelation of which is ion-responsive, with the aim of formulating an in situ gelling vehicle suitable for oral-sustained drug delivery. Method: Gels formed by solutions containing methylcellulose (1.0–2.0%) and pectin (0.5–2.0%) were assessed for suitable gel strength, and in vitro and in vivo release of paracetamol. Results: Addition of 1.5% pectin to a 2.0% methylcellulose formulation containing 20% d-sorbitol and calcium ions in complexed form increased the gel strength and provided a formulation with a suitable viscosity for ease of swallowing by dysphagic patients. Gels formed in situ after oral administration of this formulation retained their integrity in the rat stomach for sufficient time for sustained release to be achieved. In vitro release of paracetamol from methylcellulose, pectin, and methylcellulose/pectin gels was diffusion-controlled. Plasma levels of paracetamol after oral administration to rats (gastric pH 2.6 and 5.5) of a solution including 2.0% methylcellulose/1.5% pectin showed improved sustained release compared with that from both 2.0% methylcellulose and 1.5% pectin solutions. Conclusions: The addition of suitable concentrations of pectin to methylcellulose solutions produces in situ gelling formulations with suitable viscosity for administration to dysphagic patients and improved sustained release characteristics.  相似文献   

12.
The aim of this study was the synthesis of a new thiolated chitosan conjugate and the evaluation of its viscoelastic properties in vitro. The modification of chitosan was achieved by covalent attachment of isopropyl-S-acetylthioacetimidate to chitosan. The resulting conjugate (chitosan-TEA; chitosan-thioethylamidine) exhibited 300.7 ± 27.4 µmol thiol groups per gram polymer and no disulfide bond. For rheological studies, the pH of 0.5% and 1% polymer solutions was adjusted to 6.5 in order to simulate a physiological pH-level. Both, 0.5% and 1% chitosan-TEA solutions showed the transition from sol to gel within 30 min. Within 6 h of incubation, the storage modulus of 0.5% and 1% chitosan-TEA increased 3354-fold and 6199-fold, whereas the loss modulus increased 11-fold and 38-fold, respectively. Frequency sweep measurements demonstrated an increase in crosslinking of the thiolated polymer as a function of time. The formation of inter- and/or intramolecular disulfide bonds was monitored indirectly via determining the decrease of thiol groups. Unmodified chitosan did not exhibit in situ gelling properties. The release of a fluorescent marker being incorporated in a 0.5% chitosan-TEA solution was significantly (p < 0.001) slower, when the formulation was preincubated for one hour and consequently already highly crosslinked. The polymer generated within this study represents a promising novel tool for various drug delivery systems, where in situ gelling properties are advantageous.  相似文献   

13.
Background: Oral sustained release gel formulations may provide a means of administering drugs to dysphagic and geriatric patients who have difficulties with handling and taking oral dosage forms. Aim: We have designed gel formulations for the oral administration of paracetamol with suitable rheological characteristics for ease of administration to patients with swallowing difficulties and sufficient integrity in the acidic environment of the stomach to achieve a sustained release of this drug. Method: Gels formed by gelatin, agar, gellan, pectin, and xyloglucan were assessed for suitable gel strength and in vitro and in vivo release characteristics. Results: Gellan (1.5%?w/v) and xyloglucan gels (1.5%?w/w) had acceptable gel strengths for ease of swallowing and retained their integrity in the rat stomach sufficiently well to sustain the release of paracetamol over a period of 6 hours. Comparison of 1.5%?xyloglucan gels with a commercially available preparation with identical paracetamol concentrations demonstrated improved sustained release properties of the xyloglucan gels. Conclusions: Gels formed by gellan and xyloglucan have suitable rheological and sustained release characteristics for potential use as vehicles for oral delivery of drugs to dysphagic patients.  相似文献   

14.
ABSTRACT

The poor bioavailability and therapeutic response exhibited by conventional ophthalmic solutions due to rapid precorneal elimination of the drug may be overcome by the use of a gel system. The present work describes the formulation and evaluation of an ophthalmic delivery system containing an antibacterial agent, enoxacin, based on the concept of ophthalmic sustained gel, in which 2-hydroxypropyl-beta-cyclo-dextrin (HP-β-CD) was used as a penetration enhancer in combination with hydroxypropylmethylcellulose (Methocel F4M) which acted as a vehicle. The developed formulation was therapeutically efficacious, nonirritant, and provided sustained release of the drug over 8 h period in vitro and 7 h period in vivo. The developed system is a viable alternative to conventional eye drops.  相似文献   

15.
Background: To improve the therapeutic efficacy of drugs for hemorrhoid, mucoadhesive thermosensitive gel (MTG) system was developed. Methods: The MTG was prepared using poloxamer 407 (P407, 13% and 14%), polycarbophil (PC, 0.2% w/v), phenylephrine hydrochloride (0.25% w/v), lidocaine hydrochloride (1.88% w/v), and prednisolone acetate (0.05% w/v). Then, zinc oxide (ZnO) was added as an astringent as well as mucoadhesiveness-enhancing agent. Two kinds of poloxamer-based MTGs were compared in aspects of rheology, mucoadhesiveness, syringeability, and in vitro release study. Results: Both the two MTGs (13% and 14% P407) showed Newtonian behavior at 20°C whereas pseudoplastic flow at 37°C. The addition of ZnO into MTGs enhanced the mucoadhesiveness and syringeability and led the drug components to be released in accordance with Fickian mechanism. Conclusions: Taken together, the MTG-containing ZnO can be a more effective and convenient delivery system for the treatment of hemorrhoid with a reduced dosage interval.  相似文献   

16.
Objectives: The purpose of the study was to gel a rectal solution of short-chain fatty acids to decrease the loss of active materials in the colonic lumen and thereby optimize their absorption. Methods: Five thermogels were prepared with poloxamer 407 at concentrations ranging from 17% to 20%. Their viscosities were measured at room temperature and 37°C, and their gelling temperatures were determined. The adhesive properties of each gel were assessed in vitro at 37°C. Short-chain fatty acid release was studied using Guyot cells. Results: From the threshold concentration of 17.5%, the solutions, Newtonian at room temperature (50–80 mPa · s), gelled at 37°C. The higher the concentration, the higher the viscosity (1750 to 49,000 mPa · s), the lower the gelling temperature (27.6°C to 23.4°C), and the stronger the work of adhesion (2.2 to 4.5 mJ). Short-chain fatty acid release from the 18% polymer gel was decreased by 60% compared to the rectal solution. Conclusion: The 18% poloxamer 407 concentration provided a solution that was liquid at room temperature, that gelled at 37°C, possessed adhesive properties, and controlled short-chain fatty acid release.  相似文献   

17.
Objectives: The purpose of the study was to gel a rectal solution of short-chain fatty acids to decrease the loss of active materials in the colonic lumen and thereby optimize their absorption. Methods: Five thermogels were prepared with poloxamer 407 at concentrations ranging from 17% to 20%. Their viscosities were measured at room temperature and 37°C, and their gelling temperatures were determined. The adhesive properties of each gel were assessed in vitro at 37°C. Short-chain fatty acid release was studied using Guyot cells. Results: From the threshold concentration of 17.5%, the solutions, Newtonian at room temperature (50-80 mPa · s), gelled at 37°C. The higher the concentration, the higher the viscosity (1750 to 49,000 mPa · s), the lower the gelling temperature (27.6°C to 23.4°C), and the stronger the work of adhesion (2.2 to 4.5 mJ). Short-chain fatty acid release from the 18% polymer gel was decreased by 60% compared to the rectal solution. Conclusion: The 18% poloxamer 407 concentration provided a solution that was liquid at room temperature, that gelled at 37°C, possessed adhesive properties, and controlled short-chain fatty acid release.  相似文献   

18.
Purpose: Binary polymeric systems containing poloxamer 407 (P407) and Carbopol 934P (C934P) were designed to deliver propolis extract (PE) or sildenafil citrate for the endodontic treatment (pulp protection).

Methods: Gelation temperature, rheology (flow), bioadhesion, and in vitro drug release of formulations were determined.

Results: Formulations showed thermoresponsive behavior, existing as a liquid at room temperature and gel at 34–37°C. In addition, they exhibited pseudoplastic flow and low degrees of thixotropy or rheopexy. The greatest bioadhesion was noted in the formulation containing 20% P407 (w/w) and 0.10% C934P (w/w). PE release from formulation containing 15% P407 (w/w) and 0.25% C934P (w/w) was controlled by the phenomenon of relaxation of polymer chains. Moreover, sildenafil release from formulation containing 20% P407 (w/w) and 0.10% C934P (w/w) was controlled by Fickian diffusion.

Conclusion: The data obtained on these formulations indicate a potentially useful role in the endodontic treatment (pulp protection) and suggest they are worthy of clinical evaluation.  相似文献   

19.
The purpose of this study was to evaluate the potential of a pectin formulation with in situ gelling properties for the oral sustained delivery of paracetamol (acetaminophen). The formulations consisted of dilute aqueous solutions (1% to 2% w/v) of low methoxy pectin containing calcium ions in complexed form, which on release in the acidic environment of the stomach caused gelation of the pectin. In vitro studies demonstrated diffusion‐controlled release of paracetamol from the gels over a period of 6 h. A bioavailability of approximately 96% of that of a paracetamol solution could be achieved from gels containing an identical dose of drug formed in situ in the stomachs of rats, with appreciably lower peak plasma levels and a sustained release of drug over a period of at least 6 h.  相似文献   

20.
The purpose of this study was to evaluate the potential of a pectin formulation with in situ gelling properties for the oral sustained delivery of paracetamol (acetaminophen). The formulations consisted of dilute aqueous solutions (1% to 2% w/v) of low methoxy pectin containing calcium ions in complexed form, which on release in the acidic environment of the stomach caused gelation of the pectin. In vitro studies demonstrated diffusion-controlled release of paracetamol from the gels over a period of 6 h. A bioavailability of approximately 96% of that of a paracetamol solution could be achieved from gels containing an identical dose of drug formed in situ in the stomachs of rats, with appreciably lower peak plasma levels and a sustained release of drug over a period of at least 6 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号