共查询到9条相似文献,搜索用时 15 毫秒
1.
Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH4, Fe(II), Mn(II), and NH4 from leachate and reduction of O2, NO3 and SO4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence of previously present nitrate and anaerobic conditions in pristine groundwater above the plume. Stable carbon isotope (delta13C) values of methane confirm anaerobic methane oxidation immediately below the fringe zone, presumably coupled to reduction of sulfate, desorbed from iron oxide. Methane must be the principle reductant consuming soluble electron-acceptors in pristine groundwater, thereby limiting NA for other solutes including organic micro-pollutants at the fringe of this landfill leachate plume. 相似文献
2.
污水在水体中的稀释扩散及稀释度的计算 总被引:1,自引:0,他引:1
结合长江白龙港水域水力模型试验对污水排海工程中污水稀释扩散的机理进行了描述,并对污水的两种稀释度(浓度释稀度和体积稀释度)进行了分析比较,得出了在污染物本底值存在时两种稀释度之间的关系。 相似文献
3.
Indoor pollutant mixing time in an isothermal closed room: an investigation using CFD 总被引:1,自引:0,他引:1
A. J. Gadgil C. Lobscheid M. O. Abadie E. U. Finlayson 《Atmospheric environment (Oxford, England : 1994)》2003,37(39-40):5577
We report on computational fluid dynamics (CFD) predictions of mixing time of a pollutant in an unventilated, mechanically mixed, isothermal room. The study aims to determine: (1) the adequacy of the standard Reynolds Averaged Navier Stokes two-equation (k−) turbulence model for predicting the mixing time under these conditions and (2) the extent to which the mixing time depends on the room airflow, rather than the source location within the room. The CFD simulations modeled the 12 mixing time experiments performed by Drescher et al. (Indoor Air 5 (1995) 204) using a point pulse release in an isothermal, sealed room mechanically mixed with variable power blowers. Predictions of mixing time were found in good agreement with experimental measurements, over an order of magnitude variation in blower power. Additional CFD simulations were performed to investigate the relation between pollutant mixing time and source location. Seventeen source locations and five blower configurations were investigated. Results clearly show large dependence of the mixing time on the room airflow, with some dependence on source location. We further explore dependence of mixing time on the velocity and turbulence intensity at the source location. Implications for positioning air-toxic sensors in rooms are briefly discussed. 相似文献
4.
Vertical transverse mixing is known to be a controlling factor in natural attenuation of extended biodegradable plumes originating from continuously emitting sources. We perform conservative and reactive tracer tests in a quasi two-dimensional 14 m long sand box in order to quantify vertical mixing in heterogeneous media. The filling mimics natural sediments including a distribution of different hydro-facies, made of different sand mixtures, and micro-structures within the sand lenses. We quantify the concentration distribution of the conservative tracer by the analysis of digital images taken at steady state during the tracer-dye experiment. Heterogeneity causes plume meandering, leading to distorted concentration profiles. Without knowledge about the velocity distribution, it is not possible to determine meaningful vertical dispersion coefficients from the concentration profiles. Using the stream-line pattern resulting from an inverse model of previous experiments in the sand box, we can correct for the plume meandering. The resulting vertical dispersion coefficient is approximately approximately 4 x 10(-)(9) m(2)/s. We observe no distinct increase in the vertical dispersion coefficient with increasing travel distance, indicating that heterogeneity has hardly any impact on vertical transverse mixing. In the reactive tracer test, we continuously inject an alkaline solution over a certain height into the domain that is occupied otherwise by an acidic solution. The outline of the alkaline plume is visualized by adding a pH indicator into both solutions. From the height and length of the reactive plume, we estimate a transverse dispersion coefficient of approximately 3 x 10(-)(9) m(2)/s. Overall, the vertical transverse dispersion coefficients are less than an order of magnitude larger than pore diffusion coefficients and hardly increase due to heterogeneity. Thus, we conclude for the assessment of natural attenuation that reactive plumes might become very large if they are controlled by vertical dispersive mixing. 相似文献
5.
Remediation schemes for contaminated sites are often evaluated to assess their potential for source zone reduction of mass, or treatment of the contaminant between the source and a control plane (CP) to achieve regulatory limits. In this study, we utilize a stochastic stream tube model to explain the behavior of breakthrough curves (BTCs) across a CP. At the local scale, mass dissolution at the source is combined with an advection model with first-order decay for the dissolved plume. Field-scale averaging is then employed to account for spatial variation in mass within the source zone, and variation in the velocity field. Under the assumption of instantaneous mass transfer from the source to the moving liquid, semi-analytical expressions for the BTC and temporal moments are developed, followed by derivation of expressions for effective velocity, dispersion, and degradation coefficients using the method of moments. It is found that degradation strongly influences the behavior of moments and the effective parameters. While increased heterogeneity in the velocity field results in increased dispersion, degradation causes the center of mass of the plume to shift to earlier times, and reduces the dispersion of the BTC by lowering the concentrations in the tail. Modified definitions of effective parameters are presented for degrading solutes to account for the normalization constant (zeroth moment) that keeps changing with time or distance to the CP. It is shown that anomalous dispersion can result for high degradation rates combined with wide variation in velocity fluctuations. Implications of model results on estimating cleanup times and fulfillment of regulatory limits are discussed. Relating mass removal at the source to flux reductions past a control plane is confounded by many factors. Increased heterogeneity in velocity fields causes mass fluxes past a control plane to persist, however, aggressive remediation between the source and CP can reduce these fluxes. 相似文献
6.
The HQSAR (Holographic QSAR) method, which has been recently developed, can offer the ability to rapidly and easily generate QSAR models of high statistical quality and predictive value. HQSAR analysis requires selecting values for parameters that specify the size of the hologram that is to be used, and the size and type of fragment substructures that are to be encoded. The color coding is provided by HQSAR to reflect which molecular fragments may be important contributors to the biological activity. In this work, we studied the quantitative structure activity relationship of selected esters using the HQSAR method. A robust HQSAR model with r2 (non-cross-validated regression coefficient) of 0.981 and q2 (cross-validated regression coefficient) of 0.912, was developed after optimizing the fragment size and the hologram length. The color coding analysis, which has rarely been reported before, was done here to explain the outlier successfully. 相似文献
7.
F Desiato D Anfossi S Trini Castelli E Ferrero G Tinarelli 《Atmospheric environment (Oxford, England : 1994)》1998,32(24):274
Two Lagrangian particle models, APOLLO and MILORD, were used to simulate the first ETEX experiment. The role played by wind field, mixing height h and horizontal diffusivity KH appeared to be the most important aspects to be studied. The sensitivity to the accuracy of the input advection field was studied through the application of APOLLO using different ECMWF data sets differing in space and time resolution and in being forecasted or analysed, corresponding to the real-time, emergency-like condition, and to the a posteriori benchmark simulation. The role of h and KH was investigated by running both APOLLO and MILORD with different parameterisations, and comparing the model results between them and with the available observations.The model evaluation was carried out through a set of statistical indexes computed on three hourly average concentrations paired in space and time and time-integrated concentrations. It was found that the quality of the input wind field plays a major role in predicting with sufficient accuracy the plume position and extension after the first 24 h from the beginning of the release. The best-model results are obtained with large values of KH (in the range of 2.5×104–4.5×104 m2 s-1), which confirms the need to enhance the horizontal diffusion, in order to include the advection fluctuations unresolved by large-scale meteorological fields. A fixed value of h in the range 1000–1500 m seems to be more efficient than space and time variable h computed with standard algorithms. A reasonable explanation for this result is given, based on the consideration that in the long range, particles diffuse also in the residual layer above the stable nocturnal boundary layer. 相似文献
8.
A two-dimensional numerical model for evaluating the wind flow and pollutant dispersion within a street canyon was first developed using the FLUENT code, which was then validated against a wind tunnel experiment. Then, the effects of the upstream building width and upwind building arrangement on the airflow and pollutant dispersion inside an isolated street canyon were investigated numerically. The numerical results revealed that: (1) the in-canyon vortex center shifts downwards as the upstream building width increases; (2) the recirculation zone covers the entire upstream building roof for the cases when W/H = 0.5, 1.0, 1.5, and 2.0 (W is the upstream building width and H is the building height), whereas the flow reattaches the upstream building roof for the cases when W/H = 2.5 and 3.0; (3) when the upstream building width is shorter than the critical width WC (= 2H), an increase in the upstream building width leads to an increase in the pollution level on the leeward wall of the canyon and a decrease in the roof-level concentrations at the upstream building; (4) when the upstream building width is longer than the critical width, the roof-level concentrations at the upstream building are negligibly small and the pollution level on the leeward wall of the canyon is almost unaffected by a further increase in the upstream building width; (5) when the buildings are placed upwind of the canyon, the flow attaches the upstream building roof and, therefore, almost none of the pollutants are distributed on the upstream building roof; and (6) the pollution levels inside the canyon and on the downstream building roof increase significantly with the number of upwind buildings. 相似文献
9.
The Danish Emergency Response Model of the Atmosphere (DERMA) is described and applied to the first ETEX experiment. By using analysed low-resolution numerical weather-prediction data from the global model of the European Centre for Medium-range Weather Forecast (ECMWF) as well as higher-resolution data from two versions of the High Resolution Limited Area Model (HIRLAM), which are operational at the Danish Meteorological Institute (DMI), the sensitivity of DERMA to the resolution of meteorological data is analysed by comparing DERMA results with concentration measurements. Furthermore, the sensitivity to boundary-layer height and diffusion parameters is studied. These parameters include the critical bulk Richardson number, which is used to estimate the atmospheric boundary-layer height, the horizontal eddy diffusivity and the Lagrangian turbulence time scale. The parameters, which provide the best performance of DERMA, are 0.25 for the critical bulk Richardson number, 6×103 m2 s-1 for the horizontal eddy diffusivity, and 3 h for the Lagrangian time scale. DERMA is much more sensitive to boundary-layer parameters when using high-resolution DMI-HIRLAM data than when using data of lower resolution from the ECMWF. Finally, the bulk Richardson number method of boundary-layer height calculation applied to DMI-HIRLAM data is verified directly against routine radiosondes released under the tracer gas plume. The boundary-layer height estimates based on analysed NWP model data agree well with observations, and the agreement deteriorates as a function of forecast length. 相似文献