首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
WE consider a one-dimensional random Ising model with Hamiltonian $$H = \sum\limits_{i\ddag j} {\frac{{J_{ij} }}{{\left| {i - j} \right|^{1 + \varepsilon } }}S_i S_j } + h\sum\limits_i {S_i } $$ , where ε>0 andJ ij are independent, identically distributed random variables with distributiondF(x) such that i) $$\int {xdF\left( x \right) = 0} $$ , ii) $$\int {e^{tx} dF\left( x \right)< \infty \forall t \in \mathbb{R}} $$ . We construct a cluster expansion for the free energy and the Gibbs expectations of local observables. This expansion is convergent almost surely at every temperature. In this way we obtain that the free energy and the Gibbs expectations of local observables areC functions of the temperature and of the magnetic fieldh. Moreover we can estimate the decay of truncated correlation functions. In particular for every ε′>0 there exists a random variablec(ω)m, finite almost everywhere, such that $$\left| {\left\langle {s_0 s_j } \right\rangle _H - \left\langle {s_0 } \right\rangle _H \left\langle {s_j } \right\rangle _H } \right| \leqq \frac{{c\left( \omega \right)}}{{\left| j \right|^{1 + \varepsilon - \varepsilon '} }}$$ , where 〈 〉 H denotes the Gibbs average with respect to the HamiltonianH.  相似文献   

2.
We consider the time-dependent Schrödinger-Hartree equation (1) $$iu_t + \Delta u = \left( {\frac{1}{r}*|u|^2 } \right)u + \lambda \frac{u}{r},(t, x) \in \mathbb{R} \times \mathbb{R}^3 ,$$ (2) $$u(0,x) = \phi (x) \in \Sigma ^{2,2} ,x \in \mathbb{R}^3 ,$$ where λ≧0 and \(\Sigma ^{2,2} = \{ g \in L^2 ;\parallel g\parallel _{\Sigma ^{2,2} }^2 = \sum\limits_{|a| \leqq 2} {\parallel D^a g\parallel _2^2 + \sum\limits_{|\beta | \leqq 2} {\parallel x^\beta g\parallel _2^2< \infty } } \} \) . We show that there exists a unique global solutionu of (1) and (2) such that $$u \in C(\mathbb{R};H^{1,2} ) \cap L^\infty (\mathbb{R};H^{2,2} ) \cap L_{loc}^\infty (\mathbb{R};\Sigma ^{2,2} )$$ with $$u \in L^\infty (\mathbb{R};L^2 ).$$ Furthermore, we show thatu has the following estimates: $$\parallel u(t)\parallel _{2,2} \leqq C,a.c. t \in \mathbb{R},$$ and $$\parallel u(t)\parallel _\infty \leqq C(1 + |t|)^{ - 1/2} ,a.e. t \in \mathbb{R}.$$   相似文献   

3.
Let (?, τ, ω) denote aW*-algebra ?, a semigroupt>0?τ t of linear maps of ? into ?, and a faithful τ-invariant normal state ω over ?. We assume that τ is strongly positive in the sense that $$\tau _t (A^ * A) \geqq \tau _t (A)^ * \tau _t (A)$$ for allA∈? andt>0. Therefore one can define a contraction semigroupT on ?= \(\overline {\mathcal{M}\Omega } \) by $$T_t A\Omega = \tau _t (A)\Omega ,{\rm A} \in \mathcal{M},$$ where Ω is the cyclic and separating vector associated with ω. We prove 1. the fixed points ?(τ) of τ are given by ?(τ)=?∩T′=?∩E′, whereE is the orthogonal projection onto the subspace ofT-invariant vectors, 2. the state ω has a unique decomposition into τ-ergodic states if, and only if, ?(τ) or {?υE}′ is abelian or, equivalently, if (?, τ, ω) is ?-abelian, 3. the state ω is τ-ergodic if, and only if, ?υE is irreducible or if $$\mathop {\inf }\limits_{\omega '' \in Co\omega 'o\tau } \left\| {\omega '' - \omega '} \right\| = 0$$ for all normal states ω′ where Coω′°τ denotes the convex hull of {ω′°τ t } t>0. Subsequently we assume that τ is 2-positive,T is normal, andT* t ?+Ω \( \subseteqq \overline {\mathcal{M}_ + \Omega } \) , and then prove 4. there exists a strongly positive semigroup |τ| which commutes with τ and is determined by $$\left| \tau \right|_t \left( A \right)\Omega = \left| {T_t } \right|A\Omega ,$$ 5. results similar to 1 and 2 apply to |τ| but the τ-invariant state ω is |τ|-ergodic if, and only if, $$\mathop {\lim }\limits_{t \to \infty } \left\| {\omega 'o\tau _t - \omega } \right\| = 0$$ for all normal states ω′.  相似文献   

4.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

5.
In this note we study lattice Φ4-models with Hamiltonian $$H = \tfrac{1}{2}(\varphi , - \Delta \varphi ) + \lambda \Sigma \left( {\varphi _i^2 - \frac{{m^2 }}{{8\lambda }}} \right)^2$$ and Gaussian boundary conditions. Using the polymer expansion we obtain analyticity of the pressure and the correlation functions in the infinite volume limit in a region $$\left\{ {\left. \lambda \right| \left| \lambda \right|< \varepsilon ,\left| {arg } \right.\left. \lambda \right|< \frac{\pi }{2} - \delta } \right\}$$ for every δ>0.  相似文献   

6.
In this paper we want to give a new definition of fractal dimensions as small scale behavior of theq-energy of wavelet transforms. This is a generalization of previous multi-fractal approaches. With this particular definition we will show that the 2-dimension (=correlation dimension) of the spectral measure determines the long time behavior of the time evolution generated by a bounded self-adjoint operator acting in some Hilbert space ?. It will be proved that for φ, ψ∈? we have $$\mathop {\lim \inf }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ + (2)$$ and that $$\mathop {\lim \sup }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ - (2),$$ wherek ±(2) are the upper and lower correlation dimensions of the spectral measure associated with ψ and ?. A quantitative version of the RAGE theorem shall also be given.  相似文献   

7.
LetS ?=??Δ+V, withV smooth. If 0<E 2V(x), the spectrum ofS ? nearE 2 consists (for ? small) of finitely-many eigenvalues,λ j (?). We study the asymptotic distribution of these eigenvalues aboutE 2 as ?→0; we obtain semi-classical asymptotics for $$\sum\limits_j {f\left( {\frac{{\sqrt {\lambda _j (\hbar )} - E}}{\hbar }} \right)} $$ with \(\hat f \in C_0^\infty \) , in terms of the periodic classical trajectories on the energy surface \(B_E = \left\{ {\left| \xi \right|^2 + V(x) = E^2 } \right\}\) . This in turn gives Weyl-type estimates for the counting function \(\# \left\{ {j;\left| {\sqrt {\lambda _j (\hbar )} - E} \right| \leqq c\hbar } \right\}\) . We make a detailed analysis of the case when the flow onB E is periodic.  相似文献   

8.
In this paper the four-dimensional (4-D) space-velocity Cosmological General Relativity of Carmeli is developed by a general solution of the Einstein field equations. The Tolman metric is applied in the form 1 $$ ds^2 = g_{\mu \nu} dx^{\mu} dx^{\nu} = \tau^2 dv^2 -e^{\mu} dr^2 - R^2 \left(d{\theta}^2 + \mbox{sin}^2{\theta} d{\phi}^2 \right), $$ where g μν is the metric tensor. We use comoving coordinates x α = (x 0, x 1, x 2, x 3) = (τv, r, θ, ?), where τ is the Hubble-Carmeli time constant, v is the universe expansion velocity and r, θ and ? are the spatial coordinates. We assume that μ and R are each functions of the coordinates τv and r. The vacuum mass density ρ Λ is defined in terms of a cosmological constant Λ, 2 $$ \rho_{\Lambda} \equiv -\frac{ \Lambda } { \kappa \tau^2 }, $$ where the Carmeli gravitational coupling constant κ = 8πG/c 2 τ 2, where c is the speed of light in vacuum. This allows the definitions of the effective mass density 3 $$ \rho_{eff} \equiv \rho + \rho_{\Lambda} $$ and effective pressure 4 $$ p_{eff} \equiv p - c \tau \rho_{\Lambda}, $$ where ρ is the mass density and p is the pressure. Then the energy-momentum tensor 5 $$ T_{\mu \nu} = \tau^2 \left[ \left(\rho_{eff} + \frac{p_{eff}} {c \tau} \right) u_{\mu} u_{\nu} - \frac{p_{eff}} {c \tau} g_{\mu \nu} \right], $$ where u μ = (1,0,0,0) is the 4-velocity. The Einstein field equations are taken in the form 6 $$ R_{\mu \nu} = \kappa \left(T_{\mu \nu} - \frac{1} {2} g_{\mu \nu} T \right), $$ where R μν is the Ricci tensor, κ = 8πG/c 2 τ 2 is Carmeli’s gravitation constant, where G is Newton’s constant and the trace T = g αβ T αβ . By solving the field equations (6) a space-velocity cosmology is obtained analogous to the Friedmann-Lemaître-Robertson-Walker space-time cosmology. We choose an equation of state such that 7 $$ p = w_e c \tau \rho, $$ with an evolving state parameter 8 $$ w_e \left(R_v \right) = w_0 + \left(1 - R_v \right) w_a, $$ where R v = R v (v) is the scale factor and w 0 and w a are constants. Carmeli’s 4-D space-velocity cosmology is derived as a special case.  相似文献   

9.
Under conditions which are sufficiently general for physical applications the trace inequalities $$tr e^{ - (A + B)} \leqq tr e^{ - A} e^{ - B} $$ and $$|tr e^{ - (A + iB)} | \leqq tr e^{ - A} $$ withA andB self adjoint are shown in a rigorous manner.  相似文献   

10.
We study the zero-temperature behavior of the Ising model in the presence of a random transverse field. The Hamiltonian is given by $$H = - J\sum\limits_{\left\langle {x,y} \right\rangle } {\sigma _3 (x)\sigma _3 (y) - \sum\limits_x {h(x)\sigma _1 (x)} } $$ whereJ>0,x,y∈Z d, σ1, σ3 are the usual Pauli spin 1/2 matrices, andh={h(x),x∈Z d} are independent identically distributed random variables. We consider the ground state correlation function 〈σ3(x3(y)〉 and prove:
  1. Letd be arbitrary. For anym>0 andJ sufficiently small we have, for almost every choice of the random transverse fieldh and everyxZ d, that $$\left\langle {\sigma _3 (x)\sigma _3 (y)} \right\rangle \leqq C_{x,h} e^{ - m\left| {x - y} \right|} $$ for allyZ d withC x h <∞.
  2. Letd≧2. IfJ is sufficiently large, then, for almost every choice of the random transverse fieldh, the model exhibits long range order, i.e., $$\mathop {\overline {\lim } }\limits_{\left| y \right| \to \infty } \left\langle {\sigma _3 (x)\sigma _3 (y)} \right\rangle > 0$$ for anyxZ d.
  相似文献   

11.
For a one-dimensional Ising model with interaction energy $$E\left\{ \mu \right\} = - \sum\limits_{1 \leqslant i< j \leqslant N} {J(j - i)} \mu _\iota \mu _j \left[ {J(k) \geqslant 0,\mu _\iota = \pm 1} \right]$$ it is proved that there is no long-range order at any temperature when $$S_N = \sum\limits_{k = 1}^N {kJ\left( k \right) = o} \left( {[\log N]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)$$ The same result is shown to hold for the corresponding plane rotator model when $$S_N = o\left( {\left[ {{{\log N} \mathord{\left/ {\vphantom {{\log N} {\log \log N}}} \right. \kern-\nulldelimiterspace} {\log \log N}}} \right]} \right)$$   相似文献   

12.
Integral perturbed angular correlations of the 931-155keVγγ-cascade of188Os in Gd have been measured. With this technique the combined magnetic and electric hyperfine interaction of the 155 keV level of188Os as an impurity in a Gd host has been studied as a function of temperature. The result for the electric field gradient of Os in Gd at 300 K is: $$\left| {V_{zz} \left( {Os:\underline {Gd} } \right)} \right| = \left( {12.8_{ - 1.9}^{ + 3.1} } \right) \cdot 10^{17} {V \mathord{\left/ {\vphantom {V {cm^2 }}} \right. \kern-\nulldelimiterspace} {cm^2 }}.$$ For the magnetic hyperfine field at 4.2 K the value $$H_{hf} \left( {Os:\underline {Gd} } \right) = - 134\left( {26} \right)kG$$ was obtained. Sign and magnitude of the magnetic hyperfine field suggest the existence of a localized moment of about ?0.4 µ B at the site of Os in Gd. With increasing temperature the magnetic hyperfine field decreases much stronger than the magnetization of the host. Possible explanations for this anomalous temperature dependence are discussed.  相似文献   

13.
The identity $$\sum\limits_{v = 0} {\left( {\begin{array}{*{20}c} {n + 1} \\ v \\ \end{array} } \right)\left[ {\left( {\begin{array}{*{20}c} {n - v} \\ v \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {n - v} \\ {v - 1} \\ \end{array} } \right)} \right] = ( - 1)^n } $$ is proved and, by means of it, the coefficients of the decomposition ofD 1 n into irreducible representations are found. It holds: ifD 1 n \(\mathop {\sum ^n }\limits_{m = 0} A_{nm} D_m \) , then $$A_{nm} = \mathop \sum \limits_{\lambda = 0} \left( {\begin{array}{*{20}c} n \\ \lambda \\ \end{array} } \right)\left[ {\left( {\begin{array}{*{20}c} \lambda \\ {n - m - \lambda } \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} \lambda \\ {n - m - \lambda - 1} \\ \end{array} } \right)} \right].$$   相似文献   

14.
We consider the solutionu ?(t) of the saturated nonlinear Schrödinger equation (1) $$i\partial u/\partial t = - \Delta u - \left| u \right|^{4/N} u + \varepsilon \left| u \right|^{q - 1} uandu(0,.) = \varphi (.)$$ where \(N \geqslant 2,\varepsilon > 0,1 + 4/N< q< (N + 2)/(N - 2),u:\mathbb{R} \times \mathbb{R}^N \to \mathbb{C},\varphi \) , ? is a radially symmetric function inH 1(R N ). We assume that the solution of the limit equation is not globally defined in time. There is aT>0 such that \(\mathop {\lim }\limits_{t \to T} \left\| {u(t)} \right\|_{H^1 } = + \infty \) , whereu(t) is solution of (1) $$i\partial u/\partial t = - \Delta u - \left| u \right|^{4/N} uandu(0,.) = \varphi (.)$$ For ?>0 fixed,u ?(t) is defined for all time. We are interested in the limit behavior as ?→0 ofu ?(t) fort≥T. In the case where there is no loss of mass inu ? at infinity in a sense to be made precise, we describe the behavior ofu ? as ? goes to zero and we derive an existence result for a solution of (1) after the blow-up timeT in a certain sense. Nonlinear Schrödinger equation with supercritical exponents are also considered.  相似文献   

15.
The formalism of classical r-matrices is used to construct families of compatible Poisson brackets for some nonlinear integrable systems connected with Virasoro algebras. We recover the coupled KdV [1] and Harry Dym [2] systems associated with the auxiliary linear problem 1 $$\sum\limits_{i = 0}^N {\lambda '\left( {a_i \frac{{{\text{d}}^{\text{2}} }}{{{\text{dx}}^2 }} + {\text{u}}_{\text{i}} } \right)} \psi = 0$$ .  相似文献   

16.
New bounds are given for the L2-norm of the solution of the Kuramoto-Sivashinsky equation $$\partial _t U(x,t) = - (\partial _x^2 + \partial _x^4 )U(x,t) - U(x,t)\partial _x U(x,t)$$ , for initial data which are periodic with periodL. There is no requirement on the antisymmetry of the initial data. The result is $$\mathop {\lim \sup }\limits_{t \to \infty } \left\| {U( \cdot ,t)} \right\|_2 \leqslant const. L^{8/5} $$ .  相似文献   

17.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

18.
We prove that the number ofS wave bound states in a spherically symmetric potentialgV(r) is less than 1 $$g^{1/2} \left[ {\int\limits_0^\infty {r^2 V^ - (r)dr} \int\limits_0^\infty {V^ - (r)dr} } \right]^{1/4}$$ whereV ? is the attractive part of the potential, in units where ?2/2M=1.  相似文献   

19.
It is shown that the basic electrodynamical conservation laws are unaffected by the presence in free space of the photomagneton of light, $\hat B^{\left( 3 \right)} = B^{\left( 0 \right)} \hat J/\rlap{--} h$ , the fundamental photon property responsible for magnetization by light. The expectation value $B^{\left( 3 \right)} = \left\langle {\hat B^{\left( 3 \right)} } \right\rangle $ does not affect the Poynting vector, so that it does not contribute to electromagnetic flux density. The electromagnetic energy density can be expressed in terms ofB (3) through the equation $$\rlap{--} h\omega = \frac{1}{{\mu _0 }}\smallint B^{\left( 3 \right)} \cdot B^{\left( 3 \right) * } dV.$$ When light magnetizes matter, the unitB (3) of magnetic flux density per photon is transferred from light to matter. This is equivalent to an elastic transfer of angular momentum. Experimental indications for the existence ofB (3) are discussed.  相似文献   

20.
E P Bashkin 《Pramana》1987,28(5):601-601
As the temperature is lowered we get an interesting temperature region? d?T?? 2/mr 0 2 (where? d is the quantum degeneracy temperature,m the mass of a gas molecule,r 0 the radius of interparticle interaction) in which the thermal de Broglie wavelength Λ of a particle is considerably greater than its sizer 0 though Λ turns out to be less than the mean interparticle distanceN ?1/3?Λ?r 0. Although the gas molecules obey the classical Boltzmann-Maxwell statistics the system as a whole begins to exhibit a larger number of essentially quantum macroscopic collective features. One of the most interesting and dramatic features is the possibility of propagation of weakly damped spin oscillations in spin-polarized gases (external magnetic field, optical pumping). Such oscillations can propagate both in the low-frequencyθτ?1 regime and the high frequencyθτ?1. The last case is highly non-trivial for a Boltzmann gas with a short range interaction between particles. The weakness of relaxation damping of spin modes implies that the degree of polarization is high enough 1>/|α|?|a|/Λ, whereα=(N +?N ?)N,a is the two-particles-wave scattering length. Under these conditions the spectrum of magnons has the form (Bashkin 1981, 1984; Lhuillier and Laloe 1982) 1 $$\omega = \Omega _H + \left( {{{K^2 \nu _{\rm T}^2 } \mathord{\left/ {\vphantom {{K^2 \nu _{\rm T}^2 } {\Omega _{int} }}} \right. \kern-\nulldelimiterspace} {\Omega _{int} }}} \right)\left( {{{1 - i} \mathord{\left/ {\vphantom {{1 - i} {\Omega _{int} }}} \right. \kern-\nulldelimiterspace} {\Omega _{int} }}\tau } \right), \Omega _{int} = {{ - 4\pi ahN\alpha } \mathord{\left/ {\vphantom {{ - 4\pi ahN\alpha } m}} \right. \kern-\nulldelimiterspace} m}, \nu _{\rm T}^2 = {T \mathord{\left/ {\vphantom {T m}} \right. \kern-\nulldelimiterspace} m}$$ where Ω H is the Larmor precession frequency for spins in the magnetic fieldH. Collisionless Landau damping restricts the region of applicability of (1) with not too large wave vectorsKv T?|Ωint|. The existence of collective spin waves has been experimentally confirmed in NMR-experiments with gaseous atomic hydrogen H↑ (Johnsonet al 1984). The presence of undamped spin oscillations means automatically the existence of long range correlations for transverse magnetization. Such correlations decrease with the distance according to the power law 2 $$\delta _{ik} \left( r \right) = 2\left| a \right|\frac{{\left( {\beta N\alpha } \right)^2 }}{\gamma }\delta _{ik} $$ . Hereβ is the molecule magnetic moment. Spin waves being even damped can nevertheless reveal themselves atT?? 2/mr 0 2 or when |α|?r 0/Λ. The first experimental discovery or damped spin waves in gaseous3He↑ has been done in Nacheret al 1984. Oscillations of magnetization can also propagate in some condensed media such as liquid3He-4He solutions, semimagnetic semiconductors etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号