首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hong Zhao  Yue Wang  Shouri Sheng 《Tetrahedron》2008,64(32):7517-7523
A Stille coupling reaction of organostannanes with organic halides has been developed in the presence of a catalytic amount of MCM-41-supported bidentate phosphine palladium(0) complex (0.5 mol %) in DMF/H2O (9:1) under air atmosphere in high yields. This polymeric palladium catalyst exhibits higher activity than Pd(PPh3)4 and can be reused at least 10 times without any decrease in activity.  相似文献   

2.
MCM‐41‐supported tridentate nitrogen palladium(II) complex [MCM‐41‐3 N‐Pd(II)] was conveniently synthesized from commercially available and cheap 3‐(2‐aminoethylamino)propyltrimethoxysilane via immobilization on MCM‐41, followed by reacting with pyridine‐2‐carboxaldehyde and PdCl2. It was found that this palladium complex is an excellent catalyst for the Suzuki–Miyaura coupling reaction of aryl bromides on two points: (i) the use of 5 × 10−4 mol equiv. of MCM‐41‐3 N‐Pd(II) under air afforded the coupling products efficiently after easy workup; (2) the catalyst can be reused many times without loss of catalytic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A polymer‐supported macrocyclic Schiff base palladium complex has been synthesized. In the Heck reaction of aryl iodides and bromides with ethyl acrylate or styrene, the complex has been proved to give the corresponding products in good to excellent yields. The reaction proceeded smoothly in the presence of 0.5 mol% of catalyst in DMF within 1–4 h. Recycling studies have shown that the catalyst can be readily recovered and reused for four cycles with only a slightly decrease in its activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
An efficient palladium(0) immobilized MCM-41 catalytic system for C-C cross-coupling reaction has been developed. Ligand-free Pd(0)-MCM-41 catalyst can be successfully used in coupling reaction between various aryl halides including deactivated chlorobenzene with aryl borane and organotin to give biaryls in excellent yields with high turnover frequency (TOF) (the maximal TOFs are up to 6990 for the reaction of bromobenzene with phenylboronic acid). The catalyst can be recycled and reused without any loss of catalytic activity.  相似文献   

5.
A mild and efficient ligand‐free Suzuki‐type cross‐coupling reaction of benzoyl chlorides and arylboronic acids catalyzed by heterogeneous Pd/C was developed. Benzoyl chlorides undergo cross‐coupling with electronically diverse arylboronic acids to give biaryl ketones in excellent yield, under aqueous media and optimum temperature. The application of 3 mol% of 10 wt% Pd/C to the cross‐coupling delivers utmost efficiency, and could be reused up to many consecutive cycles without any loss in activity. This method proceeds under aqueous media and a recyclable catalytic system, offering an environmentally benign alternative to the existing protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The heterogeneous cross‐coupling reaction of aryl iodides with diphenylphosphine was achieved in toluene at 115 °C in the presence of 10 mol% of phenanthroline‐functionalized MCM‐41‐supported copper (I) complex (Phen‐MCM‐41‐CuI) with Cs2CO3 as base, yielding various unsymmetric triarylphosphines in good to excellent yields. This protocol can tolerate a wide range of functional groups and does not need the use of expensive additives or harsh reaction conditions. This heterogeneous Cu (I) catalyst exhibited the same catalytic activity as homogeneous CuI/Phen system, and could easily be recovered by a simple filtration of the reaction solution and recycled up to seven times without significant loss of activity.  相似文献   

7.
A novel MCM-41-supported sulfur palladium(0) complex was conveniently prepared from commercially available and cheap γ-mercaptopropyltriethoxysilane via immobilization on MCM-41, followed by reacting with palladium chloride and then the reduction with hydrazine hydrate. This complex exhibited excellent performance in Sonogashira coupling reaction.  相似文献   

8.
This study focuses on the hydrodechlorination of chlorinated arenes as well as polychlorinated biphenyls (PCBs) utilizing a resin‐supported Pd(0) catalyst. Bearing in mind the dangers associated with toxic PCBs, treatment of the remnants of industrial wastes containing PCB congeners is indispensable. One such method is reductive hydrodechlorination. Instead of utilizing traditional sources of hydrogen, ammonium formate is used for in situ hydrogen generation. Moreover, palladium nanoparticles are supported on an anionic exchange resin which makes the process recyclable with a negligible change of yield after recycling experiments. The catalyst is demonstrated in the hydrodechlorination of a wide range of chlorinated compounds and PCB congeners including aroclors 1242, 1248 and 1254. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The first MCM-41-supported bidentate phosphine palladium(0) complex has been prepared. This complex is a highly efficient catalyst for Sonogashira reaction and can be reused at least 10 times without any decrease in activity.  相似文献   

10.
Successful deposition of Pd nanoparticles is described using MOF‐199 as a support. Various characterization techniques including FTIR, XRD, SEM, BET‐BJH, TG‐DTA, and NH3‐TPD were used to verify the efficiency of catalysts. Pd/MOF‐199 is utilized as a catalyst for Suzukie Miyaura reactions with reasonable to excellent reaction yields under reflux conditions in H2O: ethanol solvent.  相似文献   

11.
A porphyrin‐based polymer with high surface area was synthesized using 5,10,15,20‐tetraphenylporphyrin through a one‐pot Friedel–Crafts alkylation reaction. Pd(II) was successfully supported on this polymer. This strategy provides an easy approach to produce highly stable Pd–porphyrin‐based polymer. The resulting Pd catalyst was characterized using Fourier transform infrared and X‐ray photoelectron spectroscopies, thermogravimetric analysis, scanning and transmission electron microscopies and N2 adsorption–desorption measurements. This porphyrin‐based polymer‐supported Pd was used as a heterogeneous catalyst for Suzuki–Miyaura coupling reaction in water. The results demonstrated that this Pd catalyst indeed exhibited excellent catalytic activity and recycling performance in water, even for inactive aryl chloride substrate. A new heterogeneous strategy for catalyzing the Suzuki–Miyaura reaction in water is provided.  相似文献   

12.
A novel nanocatalyst was developed based on covalent surface functionalization of MCM‐41 with polyethyleneimine (PEI) using [3‐(2,3‐Epoxypropoxy)propyl] trimethoxysilane (EPO) as a cross‐linker. Amine functional groups on the surface of MCM‐41 were then conjugated with iodododecane to render an amphiphilic property to the catalyst. Palladium (II) was finally immobilized onto the MCM‐41@PEI‐dodecane and the resulted MCM‐41@aPEI‐Pd nanocatalyst was characterized by FT‐IR, TEM, ICP‐AES and XPS. Our designed nanocatalyst with a distinguished core‐shell structure and Pd2+ ions as catalytic centers was explored as an efficient and recyclable catalyst for Heck and oxidative boron Heck coupling reactions. In Heck coupling reaction, the catalytic activity of MCM‐41@aPEI‐Pd in the presence of triethylamine as base led to very high yields and selectivity. Meanwhile, the MCM‐41@aPEI‐Pd as the first semi‐heterogeneous palladium catalyst was examined in the C‐4 regioselective arylation of coumarin via the direct C‐H activation and the moderate to excellent yields were obtained toward different functional groups. Leaching test indicated the high stability of palladium on the surface of MCM‐41@aPEI‐Pd as it could be recycled for several runs without significant loss of its catalytic activity.  相似文献   

13.
A new protocol is reported for the synthesis of a heterogeneous palladium nanocomposite stabilized with a terephthalic acid‐derived ligand (N ,N ‐bis(4‐hydroxy‐3‐methoxybenzylidene)terephthalohydrazide). This is a highly insoluble ligand in common organic solvents, except dimethylformamide and dimethylsulfoxide. The resulting palladium nanocomposite acts as an efficient catalyst precursor for Mizoroki–Heck coupling reactions conducted under various reaction conditions. The spectral data suggest that the rate, yield and recycling of the catalyst are more effective for C–C coupling reactions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Palladium chloride was grafted to amino‐functionalized MCM‐41 to prepare heterogeneous catalysts. XRD, N2 adsorption–desorption isotherms, IR, 13C and 29Si cross‐polarization magic‐angle spinning NMR spectroscopy and XPS techniques were employed to characterize the catalytic materials. The heterogeneous palladium catalyst exhibited excellent catalytic activity for the Heck vinylation of iodobenzene with methyl acrylate, giving 92% yield of methyl cinnamate in the presence of N‐methylpyrrolidone (NMP) and triethylamine (Et3N). The stability of the heterogeneous catalyst was also studied in detail. The catalytic tests showed that the palladium leaching correlated to solvent, base and palladium loading. The heterogeneous catalyst exhibited excellent stability towards loss of activity and palladium leaching was not observed during six recycles in the presence of toluene and Na2CO3. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A variety of terminal arylacetylenes have been conveniently synthesized in good to high yields via Sonogashira coupling of aryl iodides with (trimethylsilyl)acetylene catalyzed by MCM-41-supported mercapto palladium(0) complex, followed by desilylation under mild conditions. This polymeric palladium catalyst can be reused many times without any decrease in activity.  相似文献   

16.
A palladium bipyridyl complex anchored onto nanosized mesoporous silica MCM-41 catalyzed the cross-coupling of aryl iodides or bromides with Grignard reagents to provide the corresponding biaryls in high yields. The reaction proceeded smoothly with an equal molar amount of substrate and Grignard reagent in the presence of 0.2-0.02 mol % of catalyst in THF at 50 °C or under refluxing conditions. The catalyst prepared may be used in a very low percentage, recovered after reaction, and re-used.  相似文献   

17.
We report the preparation of palladium nanoparticles supported on mesoporous natural phosphate (Pd@NP) using a wetness impregnation method. The prepared catalyst was characterized using various techniques. Furthermore, the reduction and preparation of the palladium nanoparticles was followed using UV–visible spectra. Based on the Scherrer equation, the crystallite size of the as‐synthesized palladium nanoparticles was 10.88 nm. The performance of the synthesized catalyst was investigated in the reduction of 4‐nitrophenol as a model substrate to 4‐aminophenol using NaBH4 as a hydrogen source. Moreover, catalytic reduction of various nitroarenes was studied and monitored using UV–visible spectroscopy and gas chromatography. The Pd@NP catalyst showed a high activity for the selected reaction and could be recycled.  相似文献   

18.
A novel heterogeneous Pd catalyst was synthesized by anchoring Pd(II) onto 4′‐(4‐hydroxyphenyl)‐2,2′:6′,2″‐terpyridine‐coated Fe3O4 (FMNPs@TPy‐Pd). This catalyst has been demonstrated for the first time as a recoverable and reusable heterogeneous nanocatalyst in Suzuki and Heck cross‐coupling reactions. The catalyst is very easy to handle and is environmentally safe and economical. FMNPs@TPy‐Pd was characterized using transmission and scanning electron microscopies, X‐ray diffraction, and Fourier transform infrared and energy‐dispersive X‐ray spectroscopies.  相似文献   

19.
Biguanidine‐functionalized chitosan was synthesized and combined with palladium nanoparticles to yield a recyclable, environmentally benign, heterogeneous catalytic system for the Suzuki–Miyaura C–C coupling reaction. The catalyst was characterized using various techniques. The catalyst was used in Suzuki cross‐coupling reactions of various aryl halides, including less reactive chlorobenzenes, with phenylboronic acid to give biaryls without any additive or ligand. A reusability test demonstrated that the catalyst was highly efficient even after six runs. Solid‐phase poisoning and leaching tests indicated that the catalyst has a heterogeneous nature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Palladium nanoparticles supported on polymeric N‐heterocyclic carbene grafted silica as an efficient organic–inorganic hybrid catalyst is introduced. Pd0 nanoparticle formation, which is stabilized by the polymeric N‐heterocyclic carbene ligands and ionic liquid units, was confirmed using X‐ray photoelectron spectroscopy. Scanning electron microscopy images showed microparticles of modified silica while transmission electron microscopy images displayed a fine distribution of Pd nanoparticles. The modified structure was applied successfully in biaryl formation via Suzuki and Stille coupling reactions. Various biaryls were generated through the reaction of phenylboronic acid or tetraphenyltin with a variety of haloarenes via cross‐coupling reactions. This catalyst showed promising activity after being recycled several times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号