首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Cera Flava (CF), a natural extract obtained from beehives, is widely used in dermatological products owing to its wound healing, wrinkle reduction, UV-protective, and skin cell turnover stimulation effects. However, its effect on AD-like skin lesions is unknown. In this study, we used a mouse model of AD to evaluate the effects of CP at the molecular and phenotypic levels. Topical house dust mite (HDM) sensitization and challenge were performed on the dorsal skin of NC/Nga mice to induce AD-like cutaneous lesions, phenotypes, and immunologic responses. The topical application of CF for 6 weeks relieved HDM-induced AD-like phenotypes, as quantified by the dermatitis severity score, scratching frequency, and skin moisture. CP decreased immunoglobulin E, histamine, and thymic stromal lymphopoietin levels. Histopathological analysis showed that CF decreased epidermal thickening and the number of mast cells. CF attenuated HDM-induced changes in the expression of skin barrier-related proteins. Furthermore, CF decreased the mRNA levels of inflammatory factors, including interleukin (IL)-1β, IL-4, IL-13, IL-8, TARC, MDC, and RANTES, in dorsal skin tissue via the TLR2/MyD88/TRAF6/ERK pathway. CF influences skin barrier function and immune regulation to alleviate AD symptoms. It may therefore be an effective alternative to topical steroids for the treatment of AD.  相似文献   

3.
Atopic dermatitis (AD) is an eczematous skin disorder characterized by type 2 inflammation, barrier disruption, and intense itch. In addition to type 2 cytokines, many other cytokines, such as interferon gamma (IFN-γ), interleukin 17 (IL-17), and interleukin 22 (IL-22), play roles in the pathogenesis of AD. It has been reported that the extracellular signal-regulated kinase (ERK) is downstream of such cytokines. However, the involvement of the ERK pathway in the pathogenesis of AD has not yet been investigated. We examined the expression of p-ERK in mouse and human AD skin. We also investigated the effects of the topical application of an ERK inhibitor on the dermatitis score, transepidermal water loss (TEWL), histological change, and expression of filaggrin, using an AD-like NC/Nga murine model. The effects of an ERK inhibitor on filaggrin expression in normal human epidermal keratinocytes (NHEKs) and on chemokine production from bone marrow-derived dendritic cells (BMDCs) were also evaluated. p-ERK was highly expressed in mouse and human AD skin. Topical application of an ERK inhibitor alleviated the clinical symptoms, histological changes, TEWL, and decrease in expression of filaggrin in the AD-like NC/Nga murine model. The ERK inhibitor also restored the IL-4 induced reduction in the expression of filaggrin in NHEK, and inhibited chemokine production from BMDC induced by IL-4. These results indicate that the ERK pathway is involved in the pathogenesis of AD, and suggest that the ERK pathway has potential as a therapeutic target for AD in the future.  相似文献   

4.
Atopic dermatitis (AD) is a chronic cutaneous disorder that is characterized by severe eczematous inflammation, swelling, and lichenification. Activation of T helper (Th)-22 cells by allergens leads to epidermal hyperplasia with hyperkeratosis at the chronic phase of AD. Derma-Hc is composed of five natural herbs with anti-AD effects, such as Astragalus membranaceus BUNGE, Schizonepeta tenuifolia Briq., Cryptotympana pustulata Fabr., Angelica sinensis Diels, Arctium lappa L. In this study, the ameliorative effect of Derma-Hc on cutaneous lichenification in 2,4-dinitrochlorobenzne (DNCB)-induced AD was investigated. The dorsal skin of mice was sensitized with DNCB to induce AD-like skin lesions. The dermatitis score and frequency of scratching were evaluated. Thickness of epidermis and dermis was measured by staining with H&E. In addition, infiltration of the mast cell was observed by staining with toluidine blue. Then, desmosomal cadherin, DSC1 was examined by immunofluorescence. Pathological mechanisms involved in lichenification were analyzed in AD-like skin lesions and TNF-α + IFN-γ-treated with human keratinocytes including keratinocyte differentiation genes and JAK1-STAT3 signaling pathway with IL-22 by RT-PCR and western blotting. Topical treatment of Derma-Hc improved AD-like symptoms such as dryness, edema and lichenefication and decreased the number of scratches. Histopathological analysis demonstrated that Derma-Hc significantly inhibited epidermal hyperplasia, hyperkeratosis, and mast cells infiltration. In addition, the level of DSC1 was highly expressed in the epidermis by Derma-Hc. Moreover, mRNA expression level of FLG, an epidermal differentiation complex gene, was recovered by Derma-Hc treatment. KLK5 and KLK7 were markedly reduced to normalize keratinocyte differentiation in dorsal skin tissues and human keratinocytes. On the other hand, Derma-Hc restored expression level of SPINK5. In addition, Derma-Hc inhibited IL-22 via the blockade of JAK1-STAT3 signal pathway. Taken together, Derma-Hc, a natural herbal formula, regulated keratinocyte differentiation and inhibited epidermal hyperplasia with hyperkeratosis. Therefore, Derma-Hc could be a promising candidate for treating chronic AD through modulating signaling of IL-22-associated skin lichenification.  相似文献   

5.
Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with a type 2 T helper cell (Th2) immune response. The Indigo Pulverata Levis extract (CHD) is used in traditional Southeast Asian medicine; however, its beneficial effects on AD remain uninvestigated. Therefore, we investigated the therapeutic effects of CHD in 2,4-dinitrochlorobenzene (DNCB)-induced BALB/c mice and tumor necrosis factor (TNF)-α- and interferon gamma (IFN)-γ-stimulated HaCaT cells. We evaluated immune cell infiltration, skin thickness, and the serum IgE and TNF-α levels in DNCB-induced AD mice. Moreover, we measured the expression levels of pro-inflammatory cytokines, mitogen-activated protein kinase (MAPK), and the nuclear factor-kappa B (NF-κB) in the mice dorsal skin. We also studied the effect of CHD on the translocation of NF-κB p65 and inflammatory chemokines in HaCaT cells. Our in vivo results revealed that CHD reduced the dermis and epidermis thicknesses and inhibited immune cell infiltration. Furthermore, it suppressed the proinflammatory cytokine expression and MAPK and NF-κB phosphorylations in the skin tissue and decreased serum IgE and TNF-α levels. In vitro results indicated that CHD downregulated inflammatory chemokines and blocked NF-κB p65 translocation. Thus, we deduced that CHD is a potential drug candidate for AD treatment.  相似文献   

6.
Atopic dermatitis (AD) is a chronic inflammatory skin disease that was influenced by complex interactions via genetic, environmental, immunologic, and biochemical factors, though the cause of AD is still unknown. It characterized by elevated serum immunoglobulin E (IgE) levels, immunological abnormalities, and eosinophilia in the tissues and peripheral blood. In the present study, we applied an antimicrobial moisturizing cream containing low-molecular weight water-soluble chitosan and herbal honey (AMCH) to remedy AD-like lesions. The inhibiting effect of AMCH on NC/Nga mice, that AD-like lesion was induced by 1-chloro-2,4-dinitrobenzene (DNCB), was evaluated by examining sensory evaluation scores, scratching behavior, immune cells in blood, serum IgE level, infiltration of mast cells, and skin histology. The total sensory evaluation scores, scratching behavior, the level of serum IgE, interlukin-4 (IL-4), and IL-12 in AD mouse model were significantly reduced by AMCH. Moreover, its suppressing effect resulted in decreased mast cell infiltration. Our results suggest that AMCH might be beneficial as a potent agent for treatment of AD-like lesion.  相似文献   

7.
Disorders of the metabolism of essential fatty acids (EFAs) are related to atopic dermatitis (AD). Concentrations of dihomo-γ-linolenic acid (DGLA), an EFA, in the serum of AD patients are lower than those in healthy volunteers. Recently we developed a fermented DGLA oil, and examined whether oral administration of DGLA prevents development of dermatitis in NC/Nga mice, which spontaneously develop human AD-like skin lesions. NC/Nga mice were fed a diet either containing or not containing DGLA for 8 weeks under in air-uncontrolled conventional circumstances. Clinical skin severity scores were significantly lower in mice fed DGLA than in mice not fed it. Scratching behavior and plasma total IgE levels were also reduced in the DGLA group, in association with histological improvement. DGLA suppressed clinical severity of skin lesions dose-dependently, with an increase in DGLA contents in phospholipids of skin, spleen, and plasma. Discontinuation of DGLA administration resulted in the onset of dermatitis and a decrease in DGLA contents in skin, spleen, and plasma. These findings indicate that oral administration of DGLA effectively prevents the development of AD in NC/Nga mice, and that DGLA in phospholipids is a compound of key importance in the development and prevention of dermatitis.  相似文献   

8.
9.
10.
The prevalence of atopic dermatitis (AD), a disease characterized by severe pruritus, immune imbalance, and skin barrier dysfunction, is rapidly increasing worldwide. Deacetylasperulosidic acid (DAA) has anti-atopic activity in the three main cell types associated with AD: keratinocytes, mast cells, and eosinophils. Our study investigated the anti-atopic activity of DAA in 2,4-dinitrochlorobenzene-induced NC/Nga mice. DAA alleviated the symptoms of AD, including infiltration of inflammatory cells (mast cells and eosinophils), epidermal thickness, ear thickness, and scratching behavior. Furthermore, DAA reduced serum IgE, histamine, and IgG1/IgG2a ratio and modulated the levels of AD-related cytokines and chemokines, namely interleukin (IL)-1β, IL-4, IL-6, IL-9, IL-10, IL-12, tumor necrosis factor-α, interferon-γ, thymic stromal lymphopoietin, thymus and activation-regulated chemokine, macrophage-derived chemokine, and regulated on activation the normal T cell expressed and secreted in the serum. DAA restored immune balance by regulating gene expression and secretion of Th1-, Th2-, Th9-, Th17-, and Th22-mediated inflammatory factors in the dorsal skin and splenocytes and restored skin barrier function by increasing the expression of the pro-filaggrin gene and barrier-related proteins filaggrin, involucrin, and loricrin. These results suggest DAA as a potential therapeutic agent that can alleviate the symptoms of AD by reducing pruritus, modulating immune imbalance, and restoring skin barrier function.  相似文献   

11.
Atopic dermatitis (AD) represents a severe global burden on physical, physiological and mental health. Innate immune cell basophils are essential for provoking allergic inflammation in AD. However, the roles of novel immunoregulatory cytokine IL-37 in basophils remain elusive. We employed in vitro co-culture of human basophils and human keratinocyte HaCaT cells and an in vivo MC903-induced AD murine model to investigate the anti-inflammatory mechanism of IL-37. In the in vitro model, IL-37b significantly decreased Der p1-induced thymic stromal lymphopoietin (TSLP) overexpression in HaCaT cells and decreased the expression of TSLP receptor as well as basophil activation marker CD203c on basophils. IL-37 could also reduce Th2 cytokine IL-4 release from TSLP-primed basophils ex vivo. In the in vivo model, alternative depletion of basophils ameliorated AD symptoms and significantly lowered the Th2 cell and eosinophil populations in the ear and spleen of the mice. Blocking TSLP alleviated the AD-like symptoms and reduced the infiltration of basophils in the spleen. In CRISPR/Cas9 human IL-37b knock-in mice or mice with direct treatment by human IL-37b antibody, AD symptoms including ear swelling and itching were significantly alleviated upon MC903 challenge. Notably, IL-37b presence significantly reduced the basophil infiltration in ear lesions. In summary, IL-37b could regulate the TSLP-mediated activation of basophils and reduce the release of IL-4. The results, therefore, suggest that IL-37 may target TSLP-primed basophils to alleviate AD.  相似文献   

12.
Oral melatonin supplement has been shown to improve dermatitis severity in children with AD, but the mechanism of the effect is unclear, and it is uncertain whether melatonin has a direct immunomodulatory effect on the dermatitis. Topical melatonin treatment was applied to DNCB-stimulated Balb/c mice, and gross and pathological skin findings, serum IgE, and cytokine levels in superficial lymph nodes were analyzed. Secretion of chemokines and cell proliferative response after melatonin treatment in human keratinocyte HaCaT cells were also studied. We found that in DNCB-stimulated Balb/c mice, topical melatonin treatment improved gross dermatitis severity, reduced epidermal hyperplasia and lymphocyte infiltration in the skin, and decreased IP-10, CCL27, IL-4, and IL-17 levels in superficial skin-draining lymph nodes. Melatonin also reduced cytokine-induced secretion of AD-related chemokines IP-10 and MCP-1 and decreased IL-4-induced cell proliferation in HaCaT cells. Melatonin seems to have an immunomodulatory effect on AD, with IP-10 as a possible target, and topical melatonin treatment is a potentially useful treatment for patients with AD.  相似文献   

13.
Atopic dermatitis (AD or eczema) is the most common chronic inflammatory skin disorder worldwide. Ceramides (Cer) maintain skin barrier functions, which are disrupted in lesional skin of AD patients. However, Cer status during the pre-lesional phase of AD is not well defined. Using a variation of human AD-like preclinical model consisting of a 7-day topical exposure to ovalbumin (OVA), or control, we observed elevation of Cer C16 and C24. Skin mRNA quantification of enzymes involved in Cer metabolism [Cer synthases (CerS) and ceramidases (Asah1/Asah2)], which revealed augmented CerS 4, 5 and 6 and Asah1. Given the overall pro-apoptotic nature of Cer, local apoptosis was assessed, then quantified using novel morphometric measurements of cleaved caspase (Casp)-3-restricted immunofluorescence signal in skin samples. Apoptosis was induced in response to OVA. Because apoptosis may occur downstream of endoplasmic reticulum (ER) stress, we measured markers of ER stress-induced apoptosis and found elevated skin-associated CHOP protein upon OVA treatment. We previously substantiated the importance of mast cells (MC) in initiating early skin inflammation. OVA-induced Cer increase and local apoptosis were prevented in MC-deficient mice; however, they were restored following MC reconstitution. We propose that the MC/Cer axis is an essential pathogenic feature of pre-lesional AD, whose targeting may prevent disease development.  相似文献   

14.

Background

Due to the rising use of nanomaterials (NMs), there is concern that NMs induce undesirable biological effects because of their unique physicochemical properties. Recently, we reported that amorphous silica nanoparticles (nSPs), which are one of the most widely used NMs, can penetrate the skin barrier and induce various biological effects, including an immune-modulating effect. Thus, it should be clarified whether nSPs can be a risk factor for the aggravation of skin immune diseases. Thus, in this study, we investigated the relationship between the size of SPs and adjuvant activity using a model for atopic dermatitis.

Results

We investigated the effects of nSPs on the AD induced by intradermaly injected-mite antigen Dermatophagoides pteronyssinus (Dp) in NC/Nga mice. Ear thickness measurements and histopathological analysis revealed that a combined injection of amorphous silica particles (SPs) and Dp induced aggravation of AD in an SP size-dependent manner compared to that of Dp alone. In particular, aggravation was observed remarkably in nSP-injected groups. Furthermore, these effects were correlated with the excessive induction of total IgE and a stronger systemic Th2 response. We demonstrated that these results are associated with the induction of IL-18 and thymic stromal lymphopoietin (TSLP) in the skin lesions.

Conclusions

A particle size reduction in silica particles enhanced IL-18 and TSLP production, which leads to systemic Th2 response and aggravation of AD-like skin lesions as induced by Dp antigen treatment. We believe that appropriate regulation of nanoparticle physicochemical properties, including sizes, is a critical determinant for the design of safer forms of NMs.  相似文献   

15.
Atopic dermatitis (AD) is a chronic inflammatory skin disease that can significantly affect daily life by causing sleep disturbance due to extreme itching. In addition, if the symptoms of AD are severe, it can cause mental disorders such as ADHD and suicidal ideation. Corticosteroid preparations used for general treatment have good effects, but their use is limited due to side effects. Therefore, it is essential to minimize the side effects and study effective treatment methods. Dendrobium nobile Lindley (DNL) has been widely used for various diseases, but to the best of our knowledge, its effect on AD has not yet been proven. In this study, the inhibitory effect of DNL on AD was confirmed in a DNCB-induced Balb/c mouse. In addition, the inhibitory efficacy of inflammatory cytokines in TNF-α/IFN-γ-induced HaCaT cells and PMACI-induced HMC-1 cells was confirmed. The results demonstrated that DNL decreased IgE, IL-6, IL-4, scratching behavior, SCORAD index, infiltration of mast cells and eosinophils and decreased the thickness of the skin. Additionally, DNL inhibited the expression of cytokines and inhibited the MAPK and NF-κB signaling pathways. This suggests that DNL inhibits cytokine expression, protein signaling pathway, and immune cells, thereby improving AD symptoms in mice.  相似文献   

16.
The barrier properties of the stratum corneum (SC) are largely dependent on the intactness of the lipid lamellae that surround the corneocytes. Ceramides, fatty acids, and cholesterol together with hydrocortisone (HC) have thus been proposed as protective or therapeutic agents against xerosis and atopic dermatitis (AD). However, topical delivery of these substances is still a challenge because of the excellent barrier function of the skin. The aim of the present study was to develop a formulation with combined anti‐inflammatory/barrier repair properties. In order to achieve this goal, a new non‐ionic O/W emulsion (CerEmulsion) containing skin barrier lipids and HC was prepared. Its physicochemical and microbiological stability and skin permeation performance were compared to a blank emulsion (NoCerEmulsion). Placebos described as PlaceboCerEmulsion and PlaceboNoCerEmulsion of CerEmulsion and NoCerEmulsion, respectively, were also prepared in order to study the transepidermal water loss (TEWL) profiles. The emulsions presented white glossy and pourable characteristics with an acidic pH. CerEmulsion showed smaller droplet sizes and higher viscosity values (5000 mPas) while NoCerEmulsion presented viscosity values of 2000 mPas. Crystalline structures were prominent in both emulsions. The microbiological analysis showed that the results were within the established specification limits. CerEmulsion and NoCerEmulsion have shown similar release profiles and CerEmulsion presented a similar anti‐inflammatory activity in vivo when compared with a commercially available 1% HC emulsion. Both emulsions were chemically, physically, and microbiologically stable. TEWL was significantly lower for the group treated with PlaceboCerEmulsion, suggesting that skin hydration was higher with this ceramide‐containing formulation. Practical applications: In this work, the authors develop and characterize a new non‐ionic HC/ceramide‐dominant O/W emulsion as a topical therapy for the improvement of skin barrier abnormalities in atopic dermatitis (AD). This unique formulation includes high concentrations of three lipids (ceramides, cholesterol, and free fatty acids) and paraffin. Its use is recommended for AD patients ≥6 months of age. It is also indicated for the management and relief of burning and itching associated with various dermatoses, including AD, irritant contact dermatitis, and radiation dermatitis.  相似文献   

17.
Atopic dermatitis (AD) is a chronic and persistent inflammatory skin disease characterized by eczematous lesions and itching, and it has become a serious health problem. However, the common clinical treatments provide limited relief and are accompanied by adverse effects. Therefore, there is a need to develop novel and effective therapies to treat AD. Neferine is a small molecule compound isolated from the green embryo of the mature seeds of lotus (Nelumbo nucifera). It has a bisbenzylisoquinoline alkaloid structure. Relevant studies have shown that neferine has many pharmacological and biological activities, including anti-inflammatory, anti-thrombotic, and anti-diabetic activities. However, there are very few studies on neferine in the skin, especially the related effects on inflammatory skin diseases. In this study, we proved that it has the potential to be used in the treatment of atopic dermatitis. Through in vitro studies, we found that neferine inhibited the expression of cytokines and chemokines in TNF-α/IFN-γ-stimulated human keratinocyte (HaCaT) cells, and it reduced the phosphorylation of MAPK and the NF-κB signaling pathway. Through in vivo experiments, we used 2,4-dinitrochlorobenzene (DNCB) to induce atopic dermatitis-like skin inflammation in a mouse model. Our results show that neferine significantly decreased the skin barrier damage, scratching responses, and epidermal hyperplasia induced by DNCB. It significantly decreased transepidermal water loss (TEWL), erythema, blood flow, and ear thickness and increased surface skin hydration. Moreover, it also inhibited the expression of cytokines and the activation of signaling pathways. These results indicate that neferine has good potential as an alternative medicine for the treatment of atopic dermatitis or other skin-related inflammatory diseases.  相似文献   

18.
The incidence of cancers in atopic dermatitis (AD) is not increased, although the Th2-dominant environment is known to downregulate tumor immunity. To gain mechanistic insights regarding tumor immunity in AD, we utilized CCL17 transgenic (TG) mice overexpressing CCL17, which is a key chemokine in AD. Tumor formation and lung metastasis were accelerated in CCL17 TG mice when melanoma cells were injected subcutaneously or intravenously. Flow cytometric analysis showed increases in regulatory T cells (Tregs) in lymph nodes in CCL17 TG mice with high mRNA levels of IL-10 and Foxp3 in tumors, suggesting that Tregs attenuated tumor immunity. The frequency of myeloid-derived suppressor cells (MDSCs), however, was significantly decreased in tumors of CCL17 TG mice, suggesting that decreased MDSCs might promote tumor immunity. Expression of CXCL17, a chemoattractant of MDSCs, was decreased in tumors of CCL17 TG mice. Depletion of Tregs by the anti-CD25 antibody markedly reduced tumor volumes in CCL17 TG mice, suggesting that tumor immunity was accelerated by the decrease in MDSCs in the absence of Tregs. Thus, CCL17 attenuates tumor immunity by increasing Tregs and Th2 cells, while it decreases MDSCs through reductions in CXCL17, which may work as a “safety-net” to reduce the risk of malignant tumors in the Th2-dominant environment.  相似文献   

19.
Hyperhomocysteinemia has been suggested potentially to contribute to a variety of pathologies, such as Alzheimer’s disease (AD). While the impact of hyperhomocysteinemia on AD has been investigated extensively, there are scarce data on the effect of AD on hyperhomocysteinemia. The aim of this in vivo study was to investigate the kinetics of homocysteine (HCys) and homocysteic acid (HCA) and effects of AD-like pathology on the endogenous levels. The mice received a B-vitamin deficient diet for eight weeks, followed by the return to a balanced control diet for another eight weeks. Serum, urine, and brain tissues of AppNL-G-F knock-in and C57BL/6J wild type mice were analyzed for HCys and HCA using LC-MS/MS methods. Hyperhomocysteinemic levels were found in wild type and knock-in mice due to the consumption of the deficient diet for eight weeks, followed by a rapid normalization of the levels after the return to control chow. Hyperhomocysteinemic AppNL-G-F mice had significantly higher HCys in all matrices, but not HCA, compared to wild type control. Higher serum concentrations were associated with elevated levels in both the brain and in urine. Our findings confirm a significant impact of AD-like pathology on hyperhomocysteinemia in the AppNL-G-F mouse model. The immediate normalization of HCys and HCA after the supply of B-vitamins strengthens the idea of a B-vitamin intervention as a potentially preventive treatment option for HCys-related disorders such as AD.  相似文献   

20.
Ghrelin, a peptide hormone secreted from enteroendocrine cells of the gastrointestinal tract, has anti-inflammatory activity in skin diseases, including dermatitis and psoriasis. However, the molecular mechanism underlying the beneficial effect of ghrelin on skin inflammation is not clear. In this study, we found that ghrelin alleviates atopic dermatitis (AD)-phenotypes through suppression of thymic stromal lymphopoietin (TSLP) gene activation. Knockdown or antagonist treatment of growth hormone secretagogue receptor 1a (GHSR1a), the receptor for ghrelin, suppressed ghrelin-induced alleviation of AD-like phenotypes and suppression of TSLP gene activation. We further found that ghrelin induces activation of the glucocorticoid receptor (GR), leading to the binding of GR with histone deacetylase 3 (HDAC3) and nuclear receptor corepressor (NCoR) NCoR corepressor to negative glucocorticoid response element (nGRE) on the TSLP gene promoter. In addition, ghrelin-induced protein kinase C δ (PKCδ)-mediated phosphorylation of p300 at serine 89 (S89), which decreased the acetylation and DNA binding activity of nuclear factor- κB (NF-κB) p65 to the TSLP gene promoter. Knockdown of PKCδ abolished ghrelin-induced suppression of TSLP gene activation. Our study suggests that ghrelin may help to reduce skin inflammation through GR and PKCδ-p300-NF-κB-mediated suppression of TSLP gene activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号