首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was explored in series of the optical, thermal, and structure properties based on 60P2O5-10Al2O3-30ZnO (PAZ) glasses system that doped with varied rare-earth (RE) elements Yb2O3/Er2O3. The glass transition temperature, softening temperature and chemical durability were increased with RE-doping concentrations increasing, whereas thermal expansion coefficient was decreased. In the optical properties, the absorption and emission intensities also increase with RE-doping concentrations increasing, When Er2O3 and Yb2O3 concentrations are over than 3 mol% in the Er3+-doped PAZ system and Yb3+-doped concentration is over than 3 mol% for Er3+/Yb3+-codoped PAZ system, the emission intensity significantly decreases presumably due to concentration quenching, formation of the ions clustering, and OH groups in the glasses network. It is suggested that the maximum emission cross-section (σe) is 7.64 × 10− 21 cm2 at 1535 nm is observed for 3 mol% Er3+-doped PAZ glasses. Moreover, the maximum σe × full-width-at-half-maximum is 327.8 for 5 mol% Er3+-doped PAZ glasses.  相似文献   

2.
Crystallization processes of Li2O-Ga2O3-SiO2-NiO system glasses have been studied by X-ray diffraction, differential calorimetry and optical absorption. Transparent glass-ceramic containing LiGa5O8:Ni2+ as the sole crystalline phase has been obtained from glass with the composition of 13Li2O-23Ga2O3-64SiO2-0.1NiO (in mol%) by the heat treatment in the temperature range from 923 to 953 K. It was revealed that the specific surface area of samples enhances crystallization of LiGaSi2O6 but obstructed that of LiGa5O8. LiGa5O8 grew to nano-sized crystallites dispersed in the glass matrices and did not affect the transparency seriously. In contrast, LiGaSi2O6 grew to crystallites with diameters more than 100 nm on the surface and made the glasses opaque. Optical absorption measurements revealed that doped Ni2+ occupied five-folded trigonal bipyramidal sites in the as-quenched glass matrices but six-folded octahedral sites of precipitated LiGa5O8 in the glass-ceramics. It was confirmed that transparent glass-ceramic containing Ni2+:LiGa5O8 was effectively obtained by the heat treatment at a temperature of 953 K for 10 h.  相似文献   

3.
The optical properties of Cr3+ ions in lithium metasilicate (Li2O · SiO2) transparent glass-ceramics were investigated. The main crystalline phase precipitated was the lithium metasilicate (Li2O · SiO2) crystal. The percent crystallinity and crystalline size were ranging 65-75% and 20-35 nm, respectively. The color changes drastically to deep pink from emerald green upon crystallization. New and strong absorption bands appeared and the absorption intensity increases by about 10 times that in glass. These new absorption bands are found to be derived from Cr3+ ions in octahedral sites in the lithium metasilicate crystal lattice. Cr3+ ions substitute for three Li+ ions and occupy the distorted octahedral site between single [SiO4]n chains of lithium metasilicate crystal. The ligand field parameters can be estimated: 10Dq = 13 088 cm−1, B = 453 cm−1, Dq/B = 2.89 and C = 2036 cm−1. The near-infrared luminescence centered at 1250 nm was not detected in the deep pink glass-ceramics unlike emerald green glass.  相似文献   

4.
Y. Gandhi  N. Veeraiah 《Journal of Non》2011,357(3):1193-1202
20ZnF2-30As2O3-(50 − x)TeO2:xNiO (0 ≤ x ≤ 2.0) glasses were synthesized. The glasses were characterized by X-ray diffraction, scanning electron microscopy, EDS and DSC techniques. A variety of properties, i.e. optical absorption, infrared, magnetic susceptibilities and dielectric properties (constant ?′, loss tan δ, a.c. conductivity σac over a wide range of frequency and temperature) of these glasses have been carried out. The analysis of results of all these studies has indicated that the nickel ions occupy both octahedral and tetrahedral positions and the gradual increase of NiO content in the glass matrix causes growing proportions of Ni2+ ions that occupy octahedral positions. The luminescence spectra of these glasses have exhibited a broad emission band in region 1200-1450 nm identified due to 3T2(3F) → 3A2(3F) octahedral transition of Ni2+ ions. The luminescence efficiency and cross section have been found to be the highest for the glass containing highest concentration of NiO. Finally it is concluded that the higher the concentration of octahedrally positioned Ni2+ ions, the higher is the luminescence efficiency.  相似文献   

5.
Hongping Ma  Ping Liu  Degang Deng  Shiqing Xu 《Journal of Non》2011,357(11-13):2294-2297
We report transparent Cr4+-doped SiO2–Al2O3–ZnO–Li2O–K2O glass-ceramics with broadband infrared luminescence. After heart-treatment, Li2ZnSiO4 crystallite was precipitated in the glasses, and its average size increased with increasing heat-treatment temperature. Racah parameters of Cr4+–Li2ZnSiO4 glass-ceramics have been calculated, and it was confirmed from absorption spectra that the energy levels of Cr4+-doped glass-ceramics are close to the cross point 1E and 3T states. No infrared emission was detected in the as-made glass samples, but the broadband infrared emission centered at 1210 nm with the full width at half maximum (FWHM) of more than 250 nm was observed by exciting the glass-ceramics with excitation of an 808 nm laser diode. In order to analyze the located crystal field of Cr4+ ions, the emission spectra are fitted by multi-peak Gauss fitting. It is seen that the fluorescence spectra are fitted into two Gaussian bands at around 1195 and 1263 nm with band widths of 208 and 278 nm, respectively. The two Gaussian bands at around 1195 and 1263 nm have about the same decay rate, and hence they would probably originate from the same luminescent centers. The observed infrared emission could be attributed to Cr4+ ions at low-field sites in Li2ZnSiO4 glass-ceramics.  相似文献   

6.
Q. Qian  G.F. Yang  Z.M. Yang  Z.H. Jiang 《Journal of Non》2008,354(18):1981-1985
Spectroscopic properties of Er3+-doped Na2O-Sb2O3-B2O3-SiO2 glasses have been investigated for developing 1.5-μm broadband fiber amplifiers. An intense 1.5-μm near infrared emission with a broad full width at half maximum (FWHM) of 88 nm has been obtained for Er3+-doped 5Na2O-20Sb2O3-35B2O3-40SiO2 glass upon excitation with a 980 nm laser diode. The obtained emission cross-section of the 4I13/2 → 4I15/2 transition and the lifetime of the 4I13/2 level of Er3+ ions are 6.8 × 10−21 cm2 and 0.36 ms, respectively. It is noted that the product of the emission cross-section and the FWHM of the glass, σe × FWHM, is as great as 598.4 × 10−21 cm2 nm, which is comparable or higher than that of Er3+-doped bismuth-based and tellurite-based glasses. These special optical properties encourage in identifying them as important materials for potential applications in high performance optics and optical communication networks.  相似文献   

7.
Reduction in the temperature coefficient of the optical path length, dS/dT of Li2O-Al2O3-SiO2 glass-ceramics with near-zero thermal expansion coefficient was attempted using control of the temperature coefficient of electronic polarizability, ?, and the thermal expansion coefficient, α. The dS/dT value of 2.6 mol% B2O3-doped glass-ceramic was 12.5  × 10−6/°C, which was 0.9 ×  10−6/°C smaller than that of B2O3-free glass-ceramic. On the other hand, reduction in dS/dT through B2O3 doping was not confirmed in precursor glasses. Results showed that reduction in dS/dT of the glass-ceramic through B2O3 doping is caused by the reduction in ?. The reduction in ? from B2O3 doping was probably attributable to numerical reduction in non-bridging oxide ions with larger ? value by the concentration of boron ions in the residual glass phase. In addition, application of hydrostatic pressure during crystallization was effective to inhibit precipitation of β-spodumene solid solution, which thereby decreases dS/dT. The dS/dT value of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 ×  10−6/°C. That value was slightly larger than that of silica glass. The α value of this glass-ceramic was smaller than that of silica glass.  相似文献   

8.
The phase separation and crystallization behavior in the system (80 − X)SiO2 · X(Al2O3 + P2O5) · 5B2O3 · 15Na2O (mol%) glasses was investigated. Glasses with X = 20 and 30 phase separated into two phases, one of which is rich in Al2O3-P2O5-SiO2 and forms a continuous phase. Glasses containing a larger amount of Al2O3-P2O5 (X = 40 and 50) readily crystallize and precipitates tridymite type AlPO4 crystals. It is estimated that the phase separation occurs forming continuous Al2O3-P2O5-SiO2 phase at first, and then tridymite type AlPO4 crystals precipitate and grow in this phase. Highly transparent glass-ceramics comparable to glass can be successfully obtained by controlling heat treatment precisely. The crystal size and percent crystallinity of these transparent glass-ceramics are 20-30 nm and about 50%, respectively.  相似文献   

9.
X.L. Duan  C.F. Song  F.P. Yu  D.R. Yuan 《Journal of Non》2008,354(29):3516-3519
Co2+-doped MgAl2O4 nanocrystalline powders were prepared by co-precipitation method. The gels and/or calcined samples were characterized by means of thermogravimetry and differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectrum and near-infrared absorption spectrum. MgAl2O4 nanocrystals were produced by calcining the gel above 800 °C, with the crystallite size of 10-30 nm in the temperature range of 800-1100 °C. The influence of pH value of precipitant solution on the dispersing of powders was studied and the result showed that Co:MgAl2O4 nanocrystalline powders exhibited good dispersion when pH = 11. The absorption spectrum of Co2+-doped MgAl2O4 exhibited a broad absorption band in the wavelength range of 1200-1600 nm, which indicated that Co2+ ions substituted for the tetrahedrally coordinated Mg2+ ions in the MgAl2O4 lattice.  相似文献   

10.
Glasses of the 25Ln2O3-25B2O3-50GeO2 composition (mol%) where Ln = (1 − x − y) La, xEr, yYb, with an addition of Al2O3 have been obtained and their luminescent characteristics examined. Probabilities of spontaneous emission, peak sections of the induced radiation and quantum yields of luminescence corresponding to the 2F5/2 → 2F7/2 transition of Yb3+ ions and the 4I13/2 → 4I15/2 transition of Er3+ ions have been defined. Quantum yield of Yb3+ luminescence for glasses with low Yb2O3 concentration reaches values closed to 100%. The luminescence spectrum of Er3+ ions exhibits a broad peak at about 1530 nm with effective width more than 80 nm when excited by irradiation at λ = 977 nm. Spontaneous emission probability and peak stimulated radiation section for Er3+ luminescence band 4I13/2 → 4I15/2 were determined to be equal to 175 s−1 and 4.9 × 10−21 cm2 respectively. Effective quenching of both rare-earth activators by oscillations with ν ≈ 2630 and 2270 cm−1 was found. These oscillators, most likely, represent OH-groups connected by a hydrogen bond with non-bridging oxygen atoms in the borogermanate matrix.  相似文献   

11.
The physical and structural properties of Co2+ doped 20ZnO + xLi2O + (30 − x)Na2O + 50B2O3 (5 ≤ × ≤ 25) (ZLNB) glasses have been studied and correlated. The physical and structural parameters of all the glasses are evaluated and a non-linear behavior is observed. No sharp peaks are observed in XRD patterns of the glass samples which confirm the amorphous nature. FT-IR spectra of ZLNB glasses reveal diborate units in borate network. The optical absorption spectra suggest the site symmetry of Co2+ in the glasses is near octahedral. Crystal field and inter-electronic repulsion parameters are also evaluated. The optical band gap and Urbach energies exhibit the mixed alkali effect. All the samples are found to be strong and stable in structure with low values of Urbach energy which lie between 0.027 eV and 0.039 eV. The correlation between densities and Urbach energies of Co2+ doped ZLNB glasses with respect to Li2O content suggest a changeover conduction mechanism from electronic to ionic, with a diffusivity crossover point at x = 15 mol%.  相似文献   

12.
Er2O3-doped Bi2O3-B2O3-Ga2O3 glasses were prepared by the conventional melt-quenching method, and the Er3+:4I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. when the Er2O3 concentration increases from 0.03 to 3.0 mol%, the measured lifetime of Er3+:4I13/2 level decrease from 2.24 to 0.9 m s, and from 0.25 to 0.20 m s for the Er3+:4I11/2 level. The fast energy migration among Er3+ ions cause the reduction of lifetime of the 4I13/2 level, whereas the change in the 4I11/2 level is mainly due to a cooperative upconversion process (4I11/24I11/2) → (4F7/24I15/2). Based on the dipole-dipole interaction theory, the interaction parameter, CEr,Er, for the migration rate of Er3+:4I13/2 ↔ 4I13/2 was calculated to be 32 × 10−40 cm6 s−1.  相似文献   

13.
In this paper we describe fabrication and characterization of rare-earth-doped active tellurite glasses to be used as active laser media for fiber lasers emitting in the 2 μm region. The base composition is (mol%): 75TeO2-20ZnO-5Na2O with different concentrations of Tm3+, Yb3+ and Ho3+ as dopants or co-dopants. Optical properties of doped glasses were studied and pumping at 800 nm and at 980 nm were tested in order to compare the efficiency of two pumping mechanisms. Optical characterization carried out on glasses containing only Tm3+ ions indicated the optimum concentration of Tm2O3 in terms of emission efficiency as 1 wt%. The addition of 5 wt% of Yb2O3 to Tm3+-doped glasses led to the best results in terms of intensity of fluorescence emission and of lifetime values. Yb and Ho co-doped Tm-tellurite glass was measured in emission.  相似文献   

14.
Lead arsenate glasses containing different concentrations of NiO ranging from 0 to 1 mol% (in steps of 0.2 mol%) were prepared. The samples were characterized by X-ray diffraction and differential thermal analysis. A number of studies viz., optical absorption, thermoluminescence, magnetic susceptibilities and IR spectra, have been carried out on these glasses. The bands observed in the optical absorption spectra of the glasses have been analyzed using Tanabe-Sugano diagrams for d8 ion; the analysis indicates the presence of Ni2+ ions in both tetrahedral and octahedral positions. The increase in the concentration of NiO in the glass matrix shows a gradual transformation of nickel ions from tetrahedral positions to octahedral positions in the glass network. The thermoluminescence light output of the X-ray irradiated glasses has exhibited a glow peak at 353 K (with increasing intensity with an increase in the concentration of NiO) in addition to the conventional peak due to the recombination of electron-hole centers; this glow peak is identified due to 3T2 → 3A2 emission transition of octahedral Ni2+ ions. The value of the magnetic moment evaluated from the measured magnetic susceptibility show a decreasing trend from 3.84 to 3.10 μB with the increase in the concentration of NiO. All these studies indicate an increasing presence of octahedral (lasing) Ni2+ ions in these glasses with the increase in the concentration of NiO.  相似文献   

15.
16.
Transparent amorphous and glass-ceramics waveguides in the system ZrF4-LaF3-ErF3-AlF3 (ZELA) have been fabricated by physical vapor deposition (PVD). The ceramming process was studied by means of X-ray diffraction and transmission electron microscopy for different deposition temperatures. With increasing deposition temperature, formation of LaxEr1−xF3 nanocrystals with x ∼ 0.3 was observed. The decay curves of the 4I13/2 level in the glass-ceramics with 14.5 mol% Er3+ gave evidence of the presence of erbium both in the amorphous matrix (τ = 8.6 ms) and in the crystal phase (τ = 2.2 ms). The decrease of lifetime was due to clustering of erbium incorporated in LaF3 crystal lattice. No significant increase of attenuation loss was detected after waveguide cerammization (1.3 dB/cm at 1304 nm).  相似文献   

17.
The two-dimensional Magic Angle Flipping Nuclear Magnetic Resonance (2D MAF NMR) experiment on 29Si nuclei is used to determine the distribution of Q(n) sites in two 29Si-enriched magnesium silicate glasses with compositions 2MgO·SiO2 and MgO·SiO2. A significant degree of polymerization is observed in the 2MgO·SiO2 glass, supporting previous studies using Raman and 29Si NMR spectroscopy. Relative abundances of 0.629 ± 0.001 for Q(0) and 0.371 ± 0.001 for Q(1) were obtained from spectral fits of the 2D MAF spectrum of the 2MgO·SiO2 glass. Mole fractions for the free oxygen anion and each Q(n)-species were calculated and used in a thermodynamic model of Q(n) disproportionation to calculate an equilibrium constant of k0 = 0.04 ± 0.02 in 2MgO·SiO2. In the MgO·SiO2 glass relative abundance of 0.014 ± 0.001 for Q(0), 0.191 ± 0.003 for Q(1), 0.530 ± 0.004 for Q(2), 0.252 ± 0.003 for Q(3), and 0.014 ± 0.001 for Q(4) were measured. The mole fractions for the free oxygen anion and each Q(n)-species in MgO·SiO2 were used to calculate corresponding disproportionation equilibrium constants of k1 = 0.19 ± 0.02, k2 = 0.174 ± 0.009, and k3 = 0.11 ± 0.01. A comparison of k3 values from previous MAF studies of various alkali and alkaline earth silicate glasses indicate an exponential increase in k3 with the increasing modifying cation potential. Using the van't Hoff relation, we show that differences in both thermal history and modifier cation potential contribute to this spread in k3 values. Nuclear shielding tensor anisotropy, ζ, and asymmetry, η, values of ζ = 0.0 ppm and η = 0.0 for Q(0) and ζ = 33.0 ± 0.1 ppm, and η = 0.4 ± 0.1 for Q(1) in 2MgO·SiO2 glass were determined from its 2D MAF spectrum. These values were used in obtaining the remaining values of ζ = − 36.0 ± 0.5 ppm and η = 0.99 ± 0.01 for Q(2), and ζ = − 27.5 ± 0.5 ppm and η = 0.45 ± 0.11 for Q(3), ζ = 0.0 ppm and η = 0.0 for Q(4) in the MgO·SiO2 glass from its 2D MAF spectrum. The magnitude of ζ values observed are lower than those reported in previous MAF studies of alkali and alkaline earth silicate glasses containing different modifier cations, consistent with previously reported trends in ζ versus modifying cation potential.  相似文献   

18.
J. Li 《Journal of Non》2011,357(7):1736-1740
The optical absorption and emission intensities of Nd3+-doped transparent glass-ceramics with high crystallinity in Na2O-CaO-SiO2 (NSC) system were studied. The transmittance of NCS decreases with increasing degree of crystallinity, however it still remains 65.5% at λ = 710 nm when the crystallization is almost completed. Judd-Ofelt theory is performed to evaluate the radiative transition probability as well as quality factor, branching ratio and emission cross section. The maximum values of Ω2 and emission cross section (4F3/2 → 4I11/2) of NCS are obtained after nucleating at 630 °C for 10 h. The quality factor increases with increasing crystallinity, while branching ratio for 4F3/2 → 4I11/2 is opposite. The results show that transparent glass-ceramic with high crystallinity is a potential laser host for 1.06 μm emission.  相似文献   

19.
Z. Pan  A. Ueda  M. Hays  R. Mu  S.H. Morgan 《Journal of Non》2006,352(8):801-806
An erbium doped germanate-oxyfluoride glass 60GeO2 · 20PbO · 10PbF2 · 10CdF2 (GPOF) and a tellurium-germanate-oxyfluoride glass 30TeO2 · 30GeO2 · 20PbO · 10PbF2 · 10CdF2 (TGPOF) were prepared in the bulk form. By appropriate heat treatment of the as-prepared glasses above, transparent glass-ceramics were obtained with the formation of β-PbF2 nanocrystals in the glass matrix confirmed by X-ray diffraction. Optical absorption and photoluminescence measurements were performed on as-prepared glass and glass-ceramics. The luminescence of Er3+ ions in transparent glass-ceramics revealed sub-band splitting generally seen in a crystal host. The intensity of red and near infrared luminescence significantly increased in transparent glass-ceramic compared to that in as-prepared glass. Two luminescence bands at 758 nm from 4F7/2 → 4I13/2 and at 817 nm from 2H11/2 → 4I13/2 transitions were observed from transparent glass-ceramic but cannot be seen from the corresponding as-prepared glass. These results are attributed to the change of ligand field of Er3+ ions and the decrease of effective phonon energy when Er3+ ions were incorporated into the precipitated β-PbF2 nanocrystals.  相似文献   

20.
P. Srinivasa Rao 《Journal of Non》2011,357(21):3585-3591
The variation in physical, structural and electrical properties has been studied as a function of Bi2O3 content in 20ZnF2-(10 + x) Bi2O3-(70-x) P2O5, 0 ≤ x ≤ 10 mol% glasses, which were prepared by melt quenching technique and characterized by differential thermal analysis (DTA). Colorless samples, which have no absorption peaks, are obtained for 10 and 12 mol% of Bi2O3 and the glasses are slowly becoming brownish from 15 to 20 mol% of Bi2O3 which exhibit two absorption peaks at ~ 370 nm, ~ 450 nm correspond to Bi° transitions 4S3/2 → 2P3/2 and 4S3/2 → 2P1/2 respectively. The decrease in 3P1 → 1S0 transition of Bi3+ photo luminescence emission for 18 and 20 mol% of Bi2O3 and increase in optical absorption area shows the reduction of Bi3+ to Bi°. From FTIR studies it is observed that an addition of Bi2O3 decreases the P―O―P covalent bond by forming P―O―Bi bonds due to high polarizing nature of Bi3+ ions. Dielectric parameters like ε', tan δ and a.c. conductivity σac are found to increase and activation energy for a.c. conduction is found to decrease with the increase in the concentration of Bi2O3. Density of defect energy states is found to increase for higher concentration of Bi2O3 and is discussed according to quantum mechanical tunneling (QMT) model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号