共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome-wide RNAi screening in Caenorhabditis elegans 总被引:1,自引:0,他引:1
In Caenorhabditis elegans, introduction of double-stranded RNA (dsRNA) results in the specific inactivation of an endogenous gene with corresponding sequence; this technique is known as RNA interference (RNAi). It has previously been shown that RNAi can be performed by direct microinjection of dsRNA into adult hermaphrodite worms, by soaking worms in a solution of dsRNA, or by feeding worms Escherichia coli expressing target-gene dsRNA. We have developed a simple optimized protocol exploiting this third mode of dsRNA introduction, RNAi by feeding, which allows rapid and effective analysis of gene function in C. elegans. Furthermore, we have constructed a library of bacterial strains corresponding to roughly 86% of the estimated 19,000 predicted genes in C. elegans, and we have used it to perform genome-wide analyses of gene function. This library is publicly available, reusable resource allowing for rapid large-scale RNAi experiments. We have used this library to perform genome-wide analyses of gene function in C. elegans. Here, we describe the protocols used for bacterial library construction and for high-throughput screening in C. elegans using RNAi by feeding. 相似文献
2.
Martine Arpagaus Didier Combes Emmanuel Culetto Marta Grauso Yann Fedon Rita Romani Jean-Pierre Toutant 《Journal of Physiology》1998,92(5-6)
Whereas a single gene encodes acetylcholinesterase (AChE) in vertebrates and most insect species, four distinct genes have been cloned and characterized in the nematode Caenorhabditis elegans. We found that ace-1 (mapped to chromosome X) is prominently expressed in muscle cells whereas ace-2 (located on chromosome I) is mainly expressed in neurons. Ace-x and ace-y genes are located in close proximity on chromosome II where they are separated by only a few hundred base pairs. The role of these two genes is still unknown.
Résumé
À l'inverse de la situation des vertébrés et de la majorité des insectes, chez qui un gène unique code pour l'acétylcholinestérase (AChE), quatre gènes d'AChE ont été clones et caractérisés chez Caenorhabditis elegans. Le gène ace-1 (localisé sur le chromosome X) et le gène ace-2 (chromosome I) assurent respectivement l'expression de l'AChE dans les tissus musculaire (ace-1) et nerveux (ace-2). Les gènes ace-x et ace-y ne sont séparés que de quelques centaines de paires de bases sur le chromosome II et leur rôle est pour l'instant inconnu. 相似文献3.
M. Chalfie 《Current opinion in cell biology》1989,1(6):1122-1126
4.
5.
6.
7.
8.
There is a rich diversity of paucimannose N-glycans in worms and flies, and these may play a role in the survival of these organisms. Although paucimannose N-glycans are not expressed in vertebrates, complex N-glycans may take over some of the functions of paucimannose N-glycans. Identification of the target proteins of β-1,2-N-acetylglucosaminyltransferase I (GnTI) in worms and flies and elucidation of their functions may thus lead to a better understanding of the role of GnTI-dependent glycoproteins in the survival/longevity of both invertebrates and vertebrates. 相似文献
9.
Summary The relation of intestinal autofluorescence to tryptophan catabolism in the free-living nematode Caenorhabditis elegans has been investigated. L-Kynurenine hydroxylase (EC. 1.14.13.9) activity has been detected in normal (wild-type) individuals. Mutants in the gene flu-1 which are characterized by an altered autofluorescence of the intestine cells, i.e., more intense than wild type and bluish purple instead of light blue have also been examined. They show a markedly reduced activity of kynurenine hydroxylase. The finding supports the previously proposed model for altered fluorescence based on chromatographic identification of tryptophan catabolites present. 相似文献
10.
The second division of the gut precursor E cells is lethally accelerated during Caenorhabditis elegans gastrulation by mutations in the emb-5 gene, which encodes a presumed nuclear protein. We have isolated suppressor mutations of the temperature-sensitive allele emb-5(hc61), screened for them among dpy and other mutations routinely used as genetic markers, and identified eight emb-5 suppressor genes. Of these eight suppressor genes, at least four encode extracellular matrix proteins, i.e., three collagens and one proteoglycan. The suppression of the emb-5 gastrulation defect seemed to require the maternal expression of the suppressors. Phenotypically, the suppressors by themselves slowed down early embryonic cell divisions and corrected the abnormal cell-division sequence of emb-5 mutant embryos. We propose an indirect stress-response mechanism to be the main cause of the suppression because: (1) none of these suppressors is specific, either to particular temperature-sensitive emb-5 alleles or to the emb-5 gene; (2) suppressible alleles of genes, reported here or elsewhere, are temperature sensitive or weak; (3) the suppression is not strong but marginal; (4) the suppression itself shows some degree of temperature dependency; and (5) none of the extracellular matrix proteins identified here is known to be expressed in oocytes or early embryos, despite the present observation that the suppression is maternal. Received: 19 August 1997 / Accepted: 11 December 1997 相似文献
11.
Ai Mimoto Madoka Fujii Makoto Usami Maki Shimamura Naoko Hirabayashi Takako Kaneko Noboru Sasagawa Shoichi Ishiura 《Biochemical and biophysical research communications》2007,364(4):227
Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen. 相似文献
12.
Shen Hu Rebecca Lee Zheru Zhang Sergey N. Krylov Norman J. Dovichi 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2001,752(2):81
We present a simple one-dimensional electrophoretic map of the expressed proteins in a Caenorhabditis elegans embryo. The embryo was taken from an adult nematode, injected into a 50-μm I.D. capillary, and lysed. The proteins were fluorescently labeled and then separated by capillary electrophoresis and detected by laser-induced fluorescence. Over 20 components were resolved in the 22-min separation. The dynamic range was outstanding for this separation, noise in the baseline was less than 0.01% the amplitude of the largest component. 相似文献
13.
14.
Reproducible cell-cell interactions contribute to the invariance of Caenorhabditis elegans development and allow high resolution study of molecular mechanisms of intercellular signaling. A number of new cell interactions have been discovered in the past year. The power of nematode molecular genetics has been increased through several technical advances and the genome project, and these new approaches are now being successfully applied both to familiar and new signaling mechanisms. 相似文献
15.
Background
Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode Caenorhabditis elegans, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success. 相似文献16.
Marco A. Marra Shiv S. Prasad David L. Baillie 《Molecular & general genetics : MGG》1993,236(2-3):289-298
Summary A previous study of genomic organization described the identification of nine potential coding regions in 150 kb of genomic DNA from the unc-22(IV) region of Caenorhabditis elegans. In this study, we focus on the genomic organization of a small interval of 0.1 map unit bordered on the right by unc-22 and on the left by the left-hand breakpoints of the deficiencies sDf9, sDf19 and sDf65. This small interval at present contains a single mutagenically defined locus, the essential gene let-56. The cosmid C11F2 has previously been used to rescue let-56. Therefore, at least some of C11F2 must reside in the interval. In this paper, we report the characterization of two coding elements that reside on C11F2. Analysis of nucleotide sequence data obtained from cDNAs and cosmid subclones revealed that one of the coding elements closely resembles aromatic amino acid decarboxylases from several species. The other of these coding elements was found to closely resemble a human growth factor activatable Na+/H+ antiporter. Pairs of oligonucleotide primers, predicted from both coding elements, have been used in PCR experiments to position these coding elements between the left breakpoint of sDf19 and the left breakpoint of sDf65, between the essential genes let-653 and let-56. 相似文献
17.
Denise V. Clark Dinar S. Suleman Karen A. Beckenbach Erin J. Gilchrist David L. Baillie 《Molecular & general genetics : MGG》1995,247(3):367-378
We describe the molecular analysis of the dpy20 gene in Caenorhabditis elegans. Isolation of genomic sequences was facilitated by the availability of a mutation that resulted from insertion of a Tc1 transposable element into the dpy-20 gene. The Tc1 insertion site in the m474:: Tc1 allele was identified and was found to lie within the coding region of dpy-20. Three revertants (two wild-type and one partial revertant) resulted from the excision of this Tc1 element. Genomic dpy-20 clones were isolated from a library of wild-type DNA and were found to lie just to the left of the unc-22 locus on the physical map, compatible with the position of dpy-20 on the genetic map. Cosmid DNA containing the dpy-20 gene was successfully used to rescue the mutant phenotype of animals homozygous for another dpy-20 allele, e1282ts. Sequence analysis of the putative dpy-20 homologue in Caenorhabditis briggsae was performed to confirm identification of the coding regions of the C. elegans gene and to identify conserved regulatory regions. Sequence analysis of dpy-20 revealed that it was not similar to other genes encoding known cuticle components such as collagen or cuticulin. The dpy-20 gene product, therefore, identifies a previously unknown type of protein that may be directly or indirectly involved in cuticle function. Northern blot analysis showed that dpy-20 is expressed predominantly in the second larval stage and that the mRNA is not at all abundant. Data from temperature shift studies using the temperature-sensitive allele e1282ts showed that the sensitive period also occurs at approximately the second larval stage. Therefore, expression of dpy-20 mRNA and function of the DPY-20 protein are closely linked temporally. 相似文献
18.
Ikue Mori Donald G. Moerman Robert H. Waterston 《Molecular & general genetics : MGG》1990,220(2):251-255
Summary We have studied spontaneous and UV mutagenesis of the glyU gene in Escherichia coli trpA461 (GAG) strains carrying the pIP11 plasmid, in which the dnaQ gene encoding the 3–5 exonuclease subunit (epsilon) of DNA polymerase III is fused to the tac(trp-lac) promoter. We have used a pair of M13glyU phage in which the gene encoding the glycyl-tRNA is cloned in opposite orientations, consequently the phage present either GGG or CCC anticodon triplets for mutagenesis. The presence of IPTG, the inducer of the tac-dnaQ fusion, results in about 100-fold decrease in frequency of spontaneous Su+ (GAG) mutations arising in the CCC phage. The enhanced expression of tac-dnaQ reduces 10-fold the frequency of UV-induced Su+ (GAG) mutations in the CCC phage and nearly completely prevents generation by UV of Su+ (GAG) mutations in the GGG phage, in which UV-induced pyrimidine photoproducts can be formed only in the vicinity of the target triplet. These results suggest that both locally and regionally targeted mutagenesis is affected by overproduction of the epsilon subunit. By delayed photoreversal mutagenesis we have shown that UV-induced chromosomal mutagenesis of the umuC36 trpA461 strain harboring pIP11 is completely abolished in the presence of IPTG. This result seems to indicate that the misinocorporation step of DNA translesion synthesis is affected by excess of the epsilon subunit. Finally, we have introduced the pIP13 plasmid carrying the dnaQ gene into the recA1207 strain, which is deficient in the recombinase activity of RecA but constitutive in the protease activity. We demonstrate that the transformant shows much higher UV sensitivity than recA1207 carrying the vector plasmid pBR325, indicating that translesion synthesis significantly contributes to DNA repair capacity of cells deficient in recombination. 相似文献
19.
Summary The subject of this study is the organization of essential genes in the 2 map-unit unc-22 IV region of the Caenorhabditis elegans genome. With the goal of achieving mutational saturation of essential genes in this region, 6491 chromosomes mutagenized with ethyl methanesulfonate (EMS) were screened for the presence of lethal mutations in the unc-22 region. The genetic analysis of 21 lethal mutations in the unc-22 region resulted in the identification of 6 new essential genes, making a total of 36 characterized to date. A minimum of 49 essential genes are estimated to lie in this region. A set of seven formaldehyde-induced deficiencies of unc-22 and surrounding loci were isolated to facilitate the positioning of essential genes on the genetic and physical maps. In order to study essential genes at the molecular level, our approach was to rescue lethal mutations by the injection of genomic DNA in the form of cosmid clones into the germ-line of balanced heterozygotes carrying a lethal mutation. The cosmid clones containing let-56 and let-653 were identified by this method. 相似文献
20.
The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans 总被引:15,自引:0,他引:15
The ancestry of the cells in the hermaphrodite and male gonadal somatic structures of C. elegans has been traced from the two gonadal somatic progenitor cells (Z1 and Z4) that are present in the newly hatched larvae of both sexes. The lineages of Z1 and Z4 are essentially invariant. In hermaphrodites, they give rise to a symmetrical group of structures consisting of 143 cells, and in males, they give rise to an asymmetrical group of structures consisting of 56 cells. The male gonad can be distinguished from the hermaphrodite gonad soon after the first division of Z1 and Z4. However, the development of Z1 and Z4 in hermaphrodites shares several features in common with their development in males suggesting that the two programs are controlled by similar mechanisms. In the hermaphrodite lineage, a variability in the positions of two cells is correlated with a variability in the lineages of four cells. This variability suggests that cell-cell interaction may play a more significant role in organisms that develop by invariant lineages than has hitherto been considered. None of the somatic structures (e.g., uterus, spermatheca, vas deferens) develops as a clone of a single cell. Instead, cells that arise early in the Z1–Z4 lineage generally contribute descendants to more than one structure, and individual structures consist of descendants of more than one lineage. 相似文献