首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
张红涛 《探矿工程》2021,48(6):113-117
太原万达广场A2区商住楼基坑工程部分区域为粗砂砾石地层,基坑隔水帷幕中深层搅拌桩无法有效使用。提出了在粗砂砾石地层采用高压旋喷桩隔水帷幕的施工技术方案,采用双套管锚杆钻机引孔、单管高压喷射工艺进行施工,成功实施了这一工程。经检查,喷射注浆体相互咬合良好,有效桩径内水泥含量均匀无夹块现象,隔水帷幕止水效果良好。  相似文献   

2.
结合青海省微电机厂棚户区改造项目深基坑止水帷幕施工的成功经验,总结出卵漂石地层深基坑双排单重管高压旋喷桩止水帷幕施工的施工工艺及技术要点。  相似文献   

3.
在我国某露天煤矿截水帷幕建造过程中,由于受架空高压线、地埋光缆、地埋排水管等多处障碍物影响,局部区域直接成槽工艺无法施工,因此,选择可以"全方位"施工的MJS工法完成此类区段建造。MJS试桩结果表明,该工法在东西两侧卵砾石层施工区成桩质量差异明显,为查明成桩差异性原因,采用地质勘探、重力触探试验和抽水试验等方法,从砾石层厚度、砾径、含砂量、地层密实度和含水层渗透能力等方面进行分析。结果表明,在砾石层厚度大、含砂量小、地层密实、含水层渗透性强的施工东区无法成桩,而在条件相反的施工西区成桩质量符合要求。研究成果拓宽了MJS工法的应用范围,对类似条件下MJS工法施工参数的选择具有指导意义。   相似文献   

4.
魏一祥  闫君  于治通 《探矿工程》2006,33(1):33-34,37
介绍了高压旋喷桩在第29届奥运会青岛帆船中心陆域工程Ⅱ标段止水帷幕和基坑支护设计及施工中的应用,对止水帷幕的设计及双重管高压旋喷桩的施工工艺进行了论述。  相似文献   

5.
高压喷射注浆于1968年首创于日本。我国于20世纪70年代初相继引进并开始研究高压喷射注浆技术。目前,高压旋喷工艺应用最为广泛,工艺技术最为成熟。对旋喷桩成桩质量及单桩承载力进行研究分析,为旋喷桩在地基与基础工程、水利水电工程、止水、加固工程中的应用提供设计参考依据。该试验在陕西省延安市某建成小区内选三个试验点,按不同旋喷桩施工工艺成桩,通过对桩身完整性检测、单桩承载力试验,分析旋喷桩成桩质量及单桩承载力。  相似文献   

6.
大粒径卵砾石地层影响半径大、渗透系数高、地下水补给量大,若采用降水方法进行地下水控制,将导致严重的水资源浪费;而该类地层可适用的帷幕止水方法种类较少,且不同止水方案对工期、造价影响较大。以北京地区某深基坑工程实例为分析条件,提出了多管同步注浆止水帷幕方案,通过开展工程场区内的现场注浆模型试验,系统研究了多管同步注浆的施工工艺、注浆材料及施工参数等关键技术指标。通过现场测定及室内分析,大粒径卵砾石地层袖阀管同步注浆扩散半径大于0. 5 m,注浆固结体渗透系数约5, 2×10~(-6) cm/s,可有效降低卵砾石地层的渗透性、极大程度减少基坑抽排水量,是一种可靠的深基坑工程止水辅助施工技术,可为类似地层条件下深基坑工程地下水控制设计及施工提供参考。  相似文献   

7.
本次深基坑止水,尝试采用了高压旋喷桩与基坑支护桩结合形成止水帷幕的方法,使高压旋喷桩数由210根减至78根,不权大大减少了施工工作量,而且缩短了工期。经过充分论证和反复试验,以所取得的有效参数进行施工,最终取得成功。  相似文献   

8.
结合实例,对常用基坑支护及止水方法进行了比选,介绍了在饱水砂层深基坑中采用的悬臂式双排桩支护及高压旋喷止水帷幕技术。通过理论计算和监测数据分析了双排桩的支护效果,并探讨了高压喷射注浆止水技术在基坑支护中的应用。  相似文献   

9.
介绍了广西地矿局科技业务楼深基坑桩锚+高压旋喷止水帷幕联合支护形式、渗透系数试验、锚索试验,以及施工质量控制措施。  相似文献   

10.
随着高压旋喷技术的发展,出现了新的双高压旋喷工艺即RJP工法,为了满足RJP工法施工的需求,设计研制了XLT-230型全液压旋喷履带钻机。该钻机操纵简单,满足RJP施工工艺,配套大扭矩、大通孔式动力头,具有间断提升、定向旋喷等功能,适合多种工程工况。详细论述了XLT-230型钻机的总体结构及技术参数、钻机主要部件的设计,介绍了整机的液压系统和电气系统。  相似文献   

11.
某露天煤矿为减少矿坑疏排水量,通过施工截水帷幕切断矿坑北侧河流补给通道。根据现场施工条件,采用低强度抗渗混凝土地下连续墙、HDPE防渗膜、超高压角域变速射流注浆、咬合桩4种工艺构建截水帷幕。为检验施工过程中露天煤矿截水帷幕的效果,针对低强度抗渗混凝土地下连续墙、HDPE防渗膜、超高压角域变速射流注浆等3种截水帷幕工艺,进行了4次围井试验。试验结果表明,在露天煤矿深厚砂卵石层动水、低温条件下,低强度抗渗混凝土地下连续墙、HDPE防渗膜、超高压角域变速射流注浆帷幕均具有良好的截水效果,渗透系数分别达到8.34×10-7、6.28×10-7、7.85×10-7 cm/s,与原材料室内实验得出的渗透系数基本吻合。在4种帷幕工艺的共同作用下,露天煤矿矿坑疏排水量显著减少,围井试验在截水帷幕施工过程中具有良好的效果检验作用。   相似文献   

12.
为了对弱胶结地层条件下的掘进巷道突水溃砂进行治理,以宁东煤田麦垛山煤矿2煤大巷掘进期间突水溃砂为研究对象,针对地面治理工程量大、周期长、井下常规治理风险高等问题,采用井下挡水墙建造、高压扰动注浆、钻注一体化和孔口控压保浆技术,完成了突水溃砂点封堵体的构筑。结果表明:通过在巷道内建造挡水墙,可以有效控制注浆期间的水砂淹没范围,经过对挡水墙及其围岩强度的核算,挡水墙能够至少抵抗1.64 MPa的压力,大于顶板含水层1.2 MPa的水压。首先在距离突水溃砂点较远的区域采用高压扰动注浆建造1号封堵体,将水砂淹没范围进一步缩小,然后在距离突水溃砂点较近的区域继续施工2号封堵体,对突水溃砂点周边进行治理;研发钻注一体化技术及钻具,能够避免钻孔在退钻后塌孔,影响后续注浆,实现钻探和注浆一体化作业。发明了孔口控压保浆装置,达到了在20 MPa注浆压力条件下浆液高效利用的目的;对巷道内松散砂体固结形成的封堵体采用取心和压水试验进行质量检验,取心完整,并且封堵体在1.8 MPa水压的作用下不漏水,说明封堵体质量良好。采用高压扰动注浆对掘进巷道内突水溃砂进行治理,具有安全、高效、经济等特点,并且可以有效避免治理期间二次灾害的发生。   相似文献   

13.
碎石桩注浆是20世纪90年代以来综合砂石桩、高压注浆两项技术逐渐发展起来的一种新地基处理方法,其施工占地面积小、设备移位灵活,大大提高复合地基承载力等优点,在沿海铁路施工中取得很好的效果。  相似文献   

14.
高压水射流的破岩效果对高压水射流辅助掘进机破岩技术至关重要。为提升隧道掘进机工况下高压水射流辅助破岩的效率,开展大线速度下超高压水射流破岩试验,分析喷嘴移动线速度、射流压力和喷嘴直径对破岩效果的影响规律,并探究加磨料和射流形式对破岩效果的影响。试验结果表明,随喷嘴移动线速度增加,高压水射流的切割深度和切割宽度均近似线性减小;随射流压力增加,切割深度近似线性增大,压力从200 MPa提高到280 MPa,切割深度增加了72%~82%;喷嘴直径从0.35 mm增大到0.60 mm,切割深度增加了60%~85%。大线速度下加磨料后射流变发散,加磨料的切割深度小于纯水的切割深度,加磨料的切割宽度大于纯水的切割宽度。砂管束流射流模式的能量利用率更高,砂管束流的切割深度比长线射流的切割深度大35%~42%,砂管束流的切割宽度比长线射流的切割宽度大78%~85%。基于Crow切割岩石理论,通过试验数据回归分析,得到大线速度下超高压水射流切割深度半理论半经验预测模型,可为高压水射流辅助掘进机破岩技术中射流切割参数优化提供参考依据。研究成果对提升隧道掘进机工况下超高压水射流辅助破岩的效率是很有意义的。  相似文献   

15.
郝峰 《探矿工程》2009,36(9):52-55
根据高压旋喷桩复合土钉墙研究现状,提出了有限元数值分析软件Plaxis8.2选择理由,论述了土体本构模型选择原则,支护结构材料模型选择原则,参数取值原则,分步计算过程原则。重点给出了高压旋喷桩、土钉、砼面层相关参数的计算公式。通过代表性的示例研究了高压旋喷桩贡献作用规律。最后通过基坑支护实例,介绍了该程序在高压旋喷桩复合土钉墙设计方面的应用和验证情况。  相似文献   

16.
白逢义  王清  孙政 《世界地质》2006,25(4):450-455
高压旋喷法施工造成路基、地面抬升,是地基处理过程中较常见的现象。分析上海地铁9号线高压旋喷施工造成铁路路基隆起的工程实例,将路基变形过程和注水试验进行对比,得出了注浆过程满足土体注水膨胀原理;同时由于桩周产生的压力远大于土体所能承受的孔隙水压力,使破坏的土体挤压进路基底部,加大了隆起量。通过调整施工参数,可改变土体注水膨胀的本构定律与桩周压力公式中相关变量,从而减小隆起量;并提出了调整施工进度、工艺等相应的处理方案。  相似文献   

17.
丁旭亭  苏华  虞利军 《探矿工程》2015,42(11):62-65
普通长螺旋钻孔压灌桩适用于砂层、砾石层、硬土层及软岩层,不适用于硬度较高的岩石层。经改进钻头,加装加压系统、冷却系统后,长螺旋钻孔压灌桩可用于块石填土层、卵石层及较软—较硬基岩的钻进,拓宽了适用范围。工程实践证明,该嵌岩技术使用效果良好,具有推广价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号