首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lake El'gygytgyn, located in central Chukotka, Russian Arctic, was the subject of an international drilling project that resulted in the recovery of the longest continuous palaeoclimatic and palaeoenvironmental record for the terrestrial Arctic covering the last 3.6 million years. Here, we present the reconstruction of the lake‐level fluctuations of Lake El'gygytgyn since Marine Isotope Stage (MIS) 7 based on lithological and palynological as well as chronological studies of shallow‐water sediment cores and subaerial lake terraces. Reconstructed lake levels show an abrupt rise during glacial–interglacial terminations (MIS 6/5 and MIS 2/1) and during the MIS 4/3 stadial–interstadial transition. The most prominent lowstands occurred during glacial periods associated with a permanent lake‐ice cover (namely MIS 6, MIS 4 and MIS 2). Major triggering mechanisms of the lake‐level fluctuations at Lake El'gygytgyn are predominantly changes in air temperature and precipitation. Regional summer temperatures control the volume of meltwater supply as well as the duration of the lake‐ice cover (permanent or seasonal). The duration of the lake‐ice cover, in turn, enables or hampers near‐shore sediment transport, thus leading to long‐term lake‐level oscillations on glacial–interglacial time scales by blocking or opening the lake outflow, respectively. During periods of seasonal ice cover the lake level was additionally influenced by changes in precipitation. The discovered mechanism of climatologically driven level fluctuations of Lake El'gygytgyn are probably valid for large hydrologically open lakes in the Arctic in general, thus helping to understand arctic palaeohydrology and providing missing information for climate modelling.  相似文献   

2.
The sedimentary record from Lake George provides the longest relatively continuous Quaternary continental sequence yet available from Australia, and may record one of the longest Upper Cainozoic lacustrine records in the world.

Palaeomagnetic analysis of a 36 m core from the lake floor identifies a sequence of deposition extending through the Brunhes and Matuyama, to the Gauss magnetic Chron. A longer core from the same site, but with incomplete recovery, extends to 72 m in lacustrine sediment; the age of the base of this core estimated by extrapolation is between 4.2 and 7 Ma. As there are still older and deeper sediments in the basin, extending to an estimated depth of 134 m, the age of the tectonic formation of the Lake George basin must be reckoned as Middle Miocene or older.

The pattern of facies organisation through time demonstrates a phase of deep water deposition extending from the base of the cored sequence (72 m) up to 51.5 m, at which time a major change took place. A disconformity developed at this level, associated with a period of deep weathering and a prolonged phase of slope mantle deposition (from 51.5 to 30.8 m). A gradual return to lacustrine environments, with diminishing proportion of slope wash detritus, resulted in increased rates of deposition coincident with the Jaramillo Subchron at 21.5 m. Thereafter, throughout the Brunhes magnetic Chron, lacustrine conditions dominated, varying from deep to lake dry conditions in a rhythmic fashion, and reflecting the major climatic oscillations of the past 700 000 years, becoming more regular in the past 400 000 years.

The pollen analytical record of the upper 8.6 m, covering the last 350 000 years, provides the main framework for the reconstruction of climatic history. The pollen and algal records indicate a sequence of vegetation and lake level changes, in which four major glacial/interglacial cycles are correlated with stages 1 to 10 of the 180 marine record. This provides by far the longest continuous biostratigraphic framework for the Quaternary period in Australia.

Comparison between the palaeoclimatic record and the lake level evidence shows that there is no simple correlation between the lake level fluctuations and the glacial/ interglacial oscillations. In fact, major falls in the lake level occured both at the peak of cold glacials and during the warm interglacials. Though the falls in the lake levels during a warm period (interglacial) can be explained by high rates of evaporation, drying during maximum cold can be explained best in terms of a fall in precipitation. Permanent to deep‐lake conditions generally occurred during intermediate cool periods following warm intervals, when perhaps the seas were still warm and low rates of evaporation on land prevailed. On the other hand, short periods of shallow to deep lake levels also occurred during warm (interglacial) periods, showing that these were associated with reasonably high rates of precipitation.  相似文献   

3.
In the present paper the effects of rapid, high‐amplitude base‐level changes during the last glacial‐interglacial transition were studied for the Ain River in eastern France. During the Würm glacial maximum (MIS 2) rapid aggradation by deep‐water Gilbert‐type deltas and shallow‐water fan deltas occurred at the margins of a 20 to 50 m deep proglacial lake. A temporal high‐amplitude lake‐level fall of 60 m resulted in gravel deposition by forced‐regressive deltas, followed by rapid lake‐level rise and fine‐grained glaciolacustrine deposition. During the final deglaciation, a rapid base‐level fall of 40 m resulted in a complex fluvial response. Knickpoint formation and headward incision of the highstand deltas and concomitant deposition of gravel sheets by forced‐regressive deltas and braided systems occurred in several depocentres on the former glacial lake floor. Preservation of highstand and falling‐stage deposits and terrace formation in the incised valley depended on vertical incision and lateral channel migration. Terraces are well developed in the former lake‐floor depressions, whereas vertical incision was dominant in the higher lake‐floor areas. The Ain terrace staircase was likely formed by autogenic processes during a single allogenic base‐level fall. This case study possibly offers an analogue for the preservation of interglacial highstand coastal deltas during sea‐level fall at warm‐to‐cold climate transitions, although the rates of base‐level fall are different.  相似文献   

4.
欧亚大陆湖泊记录和两万年来大气环流变化   总被引:16,自引:2,他引:14       下载免费PDF全文
于革  王苏民 《第四纪研究》1998,18(4):360-367
159个湖泊地质记录提供了欧亚大陆两万年来大气环流变化信息。盛冰期北欧低湖面而地中海地区高湖面,反映冰流反气旋控制和西风带南迁。随着晚冰期冰流高压减弱、西风带回迁,南欧为低湖面而北欧低湖面范围减小。全新世早中期北欧阻塞高压发展,干燥炎热;南欧地区性季风环流加强,气旋雨增加。中国青藏高原至东西伯利亚高湖面,反映东亚季风扩张、季风雨以及高原对流雨增加。晚更新世以来湖泊所反映的西风带和季风环流变化,揭示了辐射异常和北半球冰流消长的动力控制。  相似文献   

5.
The marine record shows that over the last 350 ka Northern Hemisphere ice sheet volumes have fluctuated widely and only on rare short occasions have they been reduced to the present interglacial state. The fluctuations are well synchronized with hemispheric average summer insolation variations of 20 ka periodicity caused by changing orbital parameters. The development of a model which explains the varied amplitudes of the fluctuations and is consistent with the geological record embodies the following arguments: The transition from an interglacial state like today's to a glacial state is initiated when a summer insolation deficit causes a southerly extension of the North Atlantic-Arctic pack ice to 60°N latitude. The extension alters the subpolar low pressure patterns and thus causes a southward diversion of the European Gulf Stream flow. It also produces an enhanced warm West Greenland current. This current causes open seas as far north as Baffin Bay which provides moisture for rapid northern Laurentide ice sheet growth. After several glacial fluctuations driven by insolation variations, the southern Laurentide ice front may reach an extreme extension. This diverts the westerlies and the Gulf Stream thus weakening a dominant subpolar North Atlantic gyre and consequently producing a prolonged cutoff of the West Greenland current and a reduction of high latitude glacial precipitation. The subsequent high insolation can then melt back the eastern pack ice and restore the northern European Gulf Stream. This warms the high latitudes for a time sufficient to melt the continental ice, thus causing the transition back to the interglacial state.An analysis of the record in the context of model suggests that the threshold deficit in average summer insolation that is required to initiate major glacial growth is influenced by the cooling effect of the Greenland ice cap on the seas to the east. The threshold level under conditions like today's is found to lie between ?7 and ?17 ly/day relative to the present. This threshold will not be crossed for at least 54 millenia due to an interval of smaller orbital eccentricity. Probable melting of the Greenland ice cap about 30 ka AP would ensure the extension of the present interglacial beyond 120 ka AP.  相似文献   

6.
准噶尔盆地中新生代湖水位升降曲线的建立与剖析   总被引:1,自引:0,他引:1  
中新生代的准噶尔盆地为典型的内陆湖盆,四周为山系包围,是分析内陆湖泊水位升降的理想场所。本文参照全球海平面变化的计算方法,通过内陆湖盆沉积体系及其地貌特色的研究,建立准噶尔盆地中新生代湖水位升降曲线。中新生代的准噶尔盆地为一封闭型内陆盆地,湖水位升降主要受气候和构造因素的控制。笔者利用区域的气候和构造背景对湖水位的升降作了剖析,初步建立两种背景下的湖水位升降曲线。  相似文献   

7.
8.
Questions remain as to the nature of climatic change through the last glacial–interglacial transition in the eastern Mediterranean region, particularly the relative contribution of evaporation and precipitation to regional water balance. Here changes in oxygen isotope values through this time period from Eski Acıgöl, a crater lake in central Turkey, are investigated using hydrological and isotope mass balance models. These allow changes in evaporation and precipitation to be quantified and their relative importance evaluated. We show that it is the volumetric flux rate of water passing through the lake system and not the precipitation-to-evaporation ratio per se which controlled the stable isotope record in Eski Acıgöl. Early Holocene precipitation is shown to be much greater than that during both the latter part of the last glaciation and the present day. We test these calculated values against other records in the same region, firstly with other lake records in Anatolia, the Konya basin and Lake Van, and secondly with isotope-inferred palaeo-precipitation data from Soreq cave in Israel. This reveals a contrast between pre- and post-LGM precipitation values in Turkey (wetter and drier, respectively) and also suggests that during the last glacial–interglacial transition there was a more marked precipitation gradient than at present between northern/interior and southern/coastal parts of the eastern Mediterranean region.  相似文献   

9.
《第四纪研究》2009,29(4):655-664
Department of Earth Sciences,Freie Universität Berlin,Malteserstraße 74-100,12249 Berlin,Germany)
The endorheic Lake Nam Co,south Eastern Tibetan Plateau,was selected to investigate the interrelation between drainage basin processes,especially post­glacial glacier decay,and lake level fluctuations. Landforms of the drainage basin are highly influenced by tectonics,superimposed by fluvial and periglacial processes,and locally by glacial and eolian processes. Thus,geomorphological features and hydrological characteristics were compiled for the lake­basin to provide an overview of the landscape character. Data show that during the Last Glacial Maximum melt water from the mountains accumulated fluvial deposits in the foreland. Concurrently,an increase of the lake level occurred which is presently shown by a cliff line all around Nam Co with its base approximately 29m above the present lake level. The Holocene decrease of the lake level is traced by beach ridges. As Nam Co is an endorheic lake post­glacial water loss has to be primarily explained by evaporation and moisture conditions. However,more detailed conclusions on quantitative and chronological patterns of both factors,melt­water input and evaporation output,still remain to be drawn.  相似文献   

10.
郭旭东 《地质科学》1974,9(1):59-80
世界第一高峰--珠穆朗玛峰位于喜马拉雅山中段。喜马拉雅山又是世界上最高大的山脉。在那里,群峰争妍、白雪皑皑、山高谷深,地势极为险峻,藏族人民称她为“冰雪的家乡”。它的上升对我国和亚洲北部地区的气候和自然产生着巨大的影响;也是研究第四纪气候变迁的理想阵地。长期以来,关于本区复杂多变的古气候等问题曾引起了中外学者们的广泛注意。  相似文献   

11.
Two lithologically distinct tills are present near the pre-Illinoian glacial boundary in northeastern Kansas and northwestern Missouri. The tills are probably early middle Pleistocene (780 000-620 000 BP) based on normal polarity and their stratigraphic relationship to dated terraces. The upper till is sandier than the lower till and contains more expandable clay minerals and less illite than the lower till. Glaciofluvial and supraglacial sediments are preserved between the tills, yet palaeosols, or other evidence of an interglacial, are not present, suggesting that the tills were deposited during a single glaciation. Southeasterly and southwesterly trending striae and till fabric suggest that the glacial succession was deposited by at least two fluctuations (phases) of a lobe, which probably advanced down the axis of the present Missouri River lowland. These tills probably correlate to early middle Pleistocene tills in southwestern Iowa and eastern Nebraska, although it is possible that the lower till may correlate to even older tills in these areas.  相似文献   

12.
Laguna Potrok Aike, located in southernmost Patagonia (Argentina, 52°S) is a 100 m deep hydrologically closed lake that probably provides the only continental southern Patagonian archive covering a long and continuous interval of several glacial to interglacial cycles. In the context of the planned ‘International Continental Scientific Drilling Program’ initiative ‘Potrok Aike Maar Lake Sediment Archive Drilling Project’, several seismic site surveys that characterize in detail the sedimentary subsurface of the lake have been undertaken. Long sediment cores recovered the material to date and calibrate these seismic data. Laguna Potrok Aike is rimmed steeply, circular in shape with a diameter of ∼3·5 km and is surrounded by a series of subaerial palaeoshorelines, reflecting varying lake-level highstands and lowstands. Seismic data indicate a basinwide erosional unconformity that occurs consistently on the shoulder of the lake down to a depth of −33 m (below 2003 ad lake level), marking the lowest lake level during Late Glacial to Holocene times. Cores that penetrate this unconformity comprise Marine Isotope Stage 3-dated sediments (45 kyr bp ) ∼3·5 m below, and post-6800 cal yr bp transgressional sediments above the unconformity. This Middle Holocene transgression following an unprecedented lake-level lowstand marks the onset of a stepwise change in moisture, as shown by a series of up to 11 buried palaeoshorelines that were formed during lake-level stillstands at depths between −30 and −12 m. Two series of regressive shorelines between ∼5800 to 5400 and ∼4700 to 4000 cal yr bp interrupt the overall transgressional trend. In the basin, mound-like drift sediments occur after ∼6000 cal yr bp, documenting the onset of lake currents triggered by a latitudinal shift or an increase in wind intensity of the Southern Hemispheric Westerlies over Laguna Potrok Aike at that time. Furthermore, several well-defined lateral slides can be recognized. The majority of these slides occurred during the mid-Holocene lake-level lowering when the slopes became rapidly sediment-charged because of erosion from the exposed shoulder sediments. Around 7800 and 4900 cal yr bp , several slides went down simultaneously, probably triggered by seismic shaking.  相似文献   

13.
In this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.  相似文献   

14.
High-resolution 230Th/234U ages and δ18O and δ13C compositions of speleothems in Ma’ale Efrayim Cave located to the east of the central mountain ridge of Israel enable us to examine the nature of the rain shadow aridity during glacial and interglacial intervals. Speleothem growth occurred during marine glacial isotopic periods, with no growth during the two last marine isotope interglacial intervals and during the peak of the Last Glacial Maximum. This contrasts with speleothem growth in caves located on the western flank of the central mountain ridge, in the Eastern Mediterranean semiarid climatic zone, which continued throughout the last 240,000 yr. Thus, during glacial periods water reached both sides of the central mountain ridge. A comparison of the present-day rain and cave water isotopic compositions and amounts at the Ma’ale Efrayim Cave site with those on the western flank shows that evaporation and higher temperatures on the eastern flank are major influences on isotopic composition and the lack of rainfall. The δ18O and δ13C profiles of the speleothems deposited between 67,000 and 25,000 yr B.P. match the general trends of the isotopic profiles of Soreq Cave speleothems, suggesting a similar source (eastern Mediterranean Sea) and similar climatic conditions. Thus, during glacial periods the desert boundary effectively migrated further south or east from its present-day location on the eastern flank, whereas interglacial periods appear to have been similar to the present, with the desert boundary at the same position. The decrease in overall temperature and a consequent reduction in the evaporation to precipitation ratios on the eastern flank are viewed as the major factors controlling the decay of the rain shadow effect during glacial periods.  相似文献   

15.
Packrat middens radiocarbon dated at 12,280 ± 345 and 12,700 ± 165 yr B.P. record expansions of junipers and papershell pinyon (Pinus remota) into the desert lowlands of Durango and Coahuila, Mexico (26° N). Extralocal trees and shrubs presently occur 24–580 km in nearly all directions including more subtropical areas to the northeast and southeast. An equable Late Wisconsin climate marked by mild winters with increased precipitation and by cool summers with reduced summer monsoons is proposed. The extensive playas of the Bolson de Mapimi probably held water at that time. The Bolson de Mapimi was not a geographical refugium unaffected by glacial climates, although many Chihuahuan Desert plants and animals probably remain in situ as members of equable woodlands. Equable climates, low extinction rates, and repeated, rapid glacial/interglacial climatic fluctuations may have been important in the evolution and accumulation of species at lower latitudes.  相似文献   

16.
Variations in fossil diatom assemblages and their relationship with global and Indian monsoon climate changes for the last 600,000 yr were investigated using a core of ancient lake (Paleo-Kathmandu Lake) sediments drilled at the Kathmandu Basin, Nepal Himalaya. Chronological scales of the core were constructed by tuning pollen wet and dry index records to the SPECMAP δ18O stack record. Examinations of biogenic silica contents and fossil diatom assemblages revealed that variations in productivity and compositions of diatom assemblages were closely linked with global and Indian monsoon climate changes on glacial and interglacial time scales. When summer monsoonal rainfall increased during interglacials (interstadials), diatom productivity increased because of increased inputs of terrestrial nutrients into the lake. When summer monsoonal rainfall reduced and/or winter monsoonal aridification enhanced during glacials (stadials), productivity of the diatoms decreased and lake-level falling brought about changes in compositions of diatom assemblages. Monospecific assemblages by unique Cyclotella kathmanduensis and Puncticulata versiformis appeared during about 590 to 390 ka. This might be attributed to evolutionary fine-tuning of diatom assemblages to specific lake environmental conditions. Additionally, low-amplitude precessional variations in monsoon climate and less lake-level changes may have also allowed both species to dominate over the long periods.  相似文献   

17.
Holocene lake-level fluctuations in Lake Bysjön are reconstructed from recorded changes in the sediment limit and the content of reworked minerogenic matter in the sediment. These recorded changes are related to past lake-level fluctuations by correlation to fluctuations convincingly demonstrated in earlier studies. A correlation of regionally significant fluctuations in South Sweden is presented, and the climatic interpretation is discussed. A distinct lowering in lake level culminated at about 9,500-9,200 B.P., recording a major period of drier climate in the earlier part of the Holocene. After a succeeding period of increased humidity, recorded by rising and relatively higher lake level, another major period of increased dryness began at about 6,800-6,500 B.P. In contrast to the older period, the climate was not uniformly drier, but anumber of demonstrated lake-level fluctuations suggest a fluctuating climate. From the reconstruction in Bysjön, dryness culminated at about 4,900-4,600 B.P., and the major period lasted until about 2,900-2,600 B.P. After a succeeding rise in lake level, another distinct lowering is recorded some time between 1,800 B.P. and 1,200 B.P.  相似文献   

18.
Paleo-hydrologic and -vegetation proxy data from the Tanganyika basin are integrated in energy and water balance equations to infer past evaporation and precipitation during the last glacial maximum (LGM). Our approach is first validated on the modern system. Large variations are assigned to input variables to simulate the interannual precipitation variability. Equations are then applied to the LGM. We first change those input parameters inferred from proxies (basin and lake surfaces, temperature, and land albedo). Our LGM simulation suggests (in percent of modern mean values) decreases in evaporation from the lake [El: −5% (between −13% and +3%)] and land [Ec: −8% (−19/+5)] bodies, in precipitation [P: −11% (−21/0)] and (P − Ec): −42% (−44/−40). Decreases in P and E are amplified [El: −8% (−16/0); Ec: −14% (−24/−2); P: −17% (−26/−6)] when including empirical changes in atmospheric transmission coefficient and Bowen ratio. Sensitivity runs suggest that even large changes in cloud cover and air humidity should not modify these trends. The results suggest that the Earth's glacial/interglacial boundary conditions play a significant role on climate of subequatorial southern Africa.  相似文献   

19.
The endorheic Lake Nam Co,south Eastern Tibetan Plateau,was selected to investigate the interrelation between drainage basin processes,especially post-glacial glacier decay,and lake level fluctuations.Landforms of the drainage basin are highly influenced by tectonics,superimposed by fluvial and periglacial processes,and locally by glacial and eolian processes.Thus,geomorphological features and hydrological characteristics were compiled for the lake-basin to provide an overview of the landscape character.Data show that during the Last Glacial Maximum melt water from the mountains accumulated fluvial deposits in the foreland.Concurrently,an increase of the lake level occurred which is presently shown by a cliff line all around Nam Co with its base approximately 29m above the present lake level.The Holocene decrease of the lake level is traced by beach ridges.As Nam Co is an endorheic lake post-glacial water loss has to be primarily explained by evaporation and moisture conditions.However,more detailed conclusions on quantitative and chronological patterns of both factors,melt-water input and evaporation output,still remain to be drawn.  相似文献   

20.
Middle Pleistocene to Holocene sediment variations observed in a 26 metre long core taken during a cruise of the RV Marion Dufresne are presented. Core MD992202 was retrieved from the northern slope of Little Bahama Bank and provides an excellent example for sedimentation processes in a mid‐slope depositional environment. The sediment composition indicates sea‐level related deposition processes for the past 375 000 years (marine isotope stages 1 to 11). The sediments consist of: (i) periplatform ooze (fine‐grained particles of shallow‐water and pelagic origin) with moderate variations in carbonate content, carbonate mineralogy and grain‐size; and (ii) coarser intervals with cemented debris consisting of massive, poorly sorted, mud‐supported or clast‐supported deposits with an increased high‐magnesium calcite content. During interglacial stages (marine isotope stages 1, 5, 7, 9 and 11) periplatform oozes (i) are characterized by higher aragonite contents, finer grain‐size and higher organic contents, whereas during glacial stages (marine isotope stages 2 to 4, 6, 8 and 10), increased low‐magnesium and high‐magnesium calcite values, coarser grain‐size and lower organic contents are recorded. These glacial to interglacial differences in mineralogy, grain‐size distribution and organic content clearly show the impact of climatically controlled sea‐level fluctuations on the sedimentation patterns of the northern slope of Little Bahama Bank. The coarser deposits (ii) occur mainly at the transitions from glacial to interglacial and interglacial to glacial stages, and are interpreted as redeposition events, indicating a direct link between sediment properties (changes in mineralogy, grain‐size distribution, variations in organic contents) and sea‐level fluctuations. Changes in hydrostatic pressure and the wave base position during sea‐level changes are proposed to have triggered these large‐scale sediment redepositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号