首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A linear relationship has been realized between the maximum streamer length and discharge voltage of a pulsed positive streamer discharge by measuring the streamer length in water with conductivity of 100 μS cm-1using high-speed photography. Based on Ohm's law, a quantitative equation has been derived for the dependence of the maximum streamer length on the discharge voltage of a pulsed positive streamer discharge in water. According to the equation, our results suggest that the streamers spontaneously stop propagating through water due to the voltage at the streamer head dropping below the ignition voltage of a pulsed positive streamer discharge.  相似文献   

2.
In this paper, an efficient boundary condition is applied to solve the photoionization rate, and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temperature and sub-atmospheric pressure. The results show that the new boundary condition improves the calculation accuracy, but the influence of photoionization on the streamer discharge process is not obvious. The discharge current in the development of streamer discharge is defined, and the corresponding expression of the positive and negative streamer discharge current is given. The influence of the electric field exceeding the threshold value on the discharge process is preliminarily introduced. In the process of discharge, only the propagation velocity of the streamer is obviously higher than that of normal temperature and pressure, and the trend of the other parameters is basically the same as that described in the previous paper. The above results give us a deeper understanding of the discharge characteristics under low temperature and sub-atmospheric pressure, which has certain significance for the development of aviation and high voltage engineering.  相似文献   

3.
In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature subatmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature subatmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 10~(13) cm~(-3), the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research.  相似文献   

4.
The effect of air pressure (12.5, 25, 50, and 100 kPa) on the generation of runaway electron beams in a non-uniform electric field when applying voltage pulses (≈35 kV) with a rise time of ≈200 ns has been studied. The results show that the discharge has various stages: streamer, diffuse, and spark. Initially, a wide streamer develops in the gap and a diffuse discharge is formed. A spark is formed ≈100 ns after the breakdown. The current pulse of a supershort avalanche electron beam (SAEB) was measured with a collector at various pressures of air. Experiments show that there are two modes of generation of runaway electrons. At an air pressure of 25–100 kPa, a single SAEB current pulse with a full width at half-maximum (FWHM) of 120–140 ps is observed. At the air pressure of 12.5 kPa, two current pulses of the electron beam are observed. FWHM of the first and second current pulses are ≈140 ps and ≈300 ps, respectively. The current pulse amplitude of the second electron beam is higher than that of the first one, but the electron energy is less.  相似文献   

5.
In this work, a single Al2O3 particle packed dielectric barrier discharge (DBD) reactor with adjustable discharge gap is built, and the influences of the particle shape (ball and column) and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied. Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor. The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge. The length of streamer discharge is proportional to the size of the residual gap, but the number of discharge times of a single voltage cycle shows an opposite trend. Compared to the column, a smooth spherical surface is more conducive to the formation of large and uniform surface discharges. The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball. All in all, the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis.  相似文献   

6.
The pre-ionized 60 MHz very-high-frequency (VHF) magnetron discharge at low pressure, assisted by inductively coupled plasma (ICP) discharge, was developed. The measurement of ion flux density and ion energy to the substrate was carried out by a retarding field energy analyzer. The electric characteristics of discharge were also investigated by voltage–current probe technique. It was found that by reducing the discharge pressure of VHF magnetron discharge from 5 to 1 Pa, the ion flux density increased about four times, meanwhile the ion energy also increased doubly. The electric characteristics of discharge also showed that a little improvement of sputtering effectiveness was achieved by reducing discharge pressure. Therefore, the deposition property of VHF (60 MHz) magnetron sputtering can be improved by reducing the discharge pressure using the ICP-assisted pre-ionized discharge.  相似文献   

7.
A pseudoglow discharge behaviour is achieved at a 2.0-mm dielectric-dielectric electrode gap in pure helium under atmospheric pressure. An experimental study of the pseudoglow discharges is presented. The electrical characteristics and the discharge photos of the pseudoglow discharges are analyzed and discussed. The current-voltage parameters of the pseudoglow dis- charges are considered in regard to the influence on their behaviour.  相似文献   

8.
For the partial discharge test of electrical equipment with large capacitance, the use of lowfrequency voltage instead of power frequency voltage can effectively reduce the capacity requirements of test power supply. However, the validity of PD test under low frequency voltage needs to be evaluated. In order to investigate the influence of voltage frequency on corona discharge in the air, the discharge test of the tip-plate electrode under the frequency from 50 to 0.1 Hz is carried out based on the impulse current method. The results show that some of the main features of corona under low frequency do not change. The magnitude of discharge in a positive half cycle is obviously larger than that in a negative cycle. The magnitude of discharge and interval in positive cycle are random, while that in negative cycle are regular. With the decrease of frequency, the inception voltage increases. The variation trend of maximum and average magnitude and repetition rate of the discharge in positive and negative half cycle with the variation of voltage frequency and magnitude is demonstrated, with discussion and interpretation from the aspects of space charge transportation, effective discharge time and transition of discharge modes. There is an obvious difference in the phase resolved pattern of partial discharge and characteristic parameters of discharge patterns between power and low frequency. The experimental results can be the reference for mode identification of partial discharge under low frequency tests. The trend of the measured parameters with the variation of frequency provides more information about the insulation defect than traditional measurements under a single frequency (usually 50 Hz). Also it helps to understand the mechanism of corona discharge with an explanation of the characteristics under different frequencies.  相似文献   

9.
Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed under well-defined discharge conditions(chamber geometry,input power,AC power frequency,and external electrical characteristics).The problems encountered in describing the characteristics of AC discharge in many probe diagnostic methods were addressed by using an improved probe diagnostics design.This design can also be applied to the measurement of plasma parameters in many kinds of plasma sources in which the probe potential fluctuates with the discharge current.Several parameters of the hollow electrode AC helium discharge plasma were measured,including the plasma density,electron temperature,plasma density profiles,and changes in plasma density at different input power values and helium pressures.The characteristics of the coaxial gridded hollow electrode plasma determined by the experiments are suitable for comparison with plasma simulations,and for use in many applications of hollow cathode plasma.  相似文献   

10.
Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch. By varying both the inter-pulse duration and the pulse frequency, the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure, the gas composition as well as the bias voltage. The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate. The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges. The repetitive nanosecond pulse source is also applied to the generation of large volume, and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.  相似文献   

11.
Experimental data are presented for a study on the dependence of the I-V character- istics of the corona discharge on pressure and electrode spacing using point-to-plane electrode con- figuration. These experimental data are obtained by a fast, automatic computer data-acquisition system. The data are used to suggest an alternative dimensionally self-consistent empirical equa- tion for the parameterization of the I-V curves. The formula eliminates the need for any prior assumptions concerning the inception voltage, as is customary in this type of work.  相似文献   

12.
Experimental data are presented for a study on the dependence of the I-V characteristics of the corona discharge on pressure and electrode spacing using point-to-plane electrode configuration.These experimental data are obtained by a fast,automatic computer data-acquisition system.The data are used to suggest an alternative dimensionally self-consistent empirical equation for the parameterization of the I-V curves.The formula eliminates the need for any prior assumptions concerning the inception voltage,as is customary in this type of work.  相似文献   

13.
In this paper,the influence of voltage rising time on a pulsed-dc helium-air plasma at atmospheric pressure is numerically simulated.Simulation results show that as the voltage rising time increases from 10 ns to 30 ns,there is a decrease in the discharge current,namely 0.052 A when the voltage rising time is 10 ns and 0.038 A when the voltage rising time is 30 ns.Additionally,a shorter voltage rising time results in a faster breakdown,a more rapidly rising current waveform,and a higher breakdown voltage.Furthermore,the basic paraneters of the streamer discharge also increase with voltage rise rate,which is ascribed to the fact that more energetic electrons are produced in a shorter voltage rising time.Therefore,a pulsed-dc voltage with a short rising time is desirable for efficient production of nonequilibrium atmospheric pressure plasma discharge.  相似文献   

14.
本文报道使用氧化钯作催化剂、二氧六环作溶剂,在氚气压力为13.3kPa下,催化氚化强效镇痛剂,制得氚标记强效镇痛剂放射性比度为51.8—242.OGBq/mmol。该法与常用的高氚压气-液交换法相比,只有用氚量少、污染小、经济等优点。  相似文献   

15.
One of the main problems in the Ultra High Voltage(UHV) transmission project is to choose the external insulation distance,which requires a deep understanding of the long air gap discharge mechanism.The leader-streamer propagation is one of most important stages in long air gap discharge.In the conductor-tower lattice configuration,we have measured the voltage,the current on the high voltage side and the electric field in the gap.While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape,the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in the experiment.Besides,it is found that the leader velocity,width and injected charge for the branch type streamer are greater than those of a diffuse type.We propose that the phenomenon results from the high humidity,which was 15.5-16.5 g/m~3 in our experiment.  相似文献   

16.
Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF6-N2-CO2 gas mixtures at atmospheric pressure, under a uniform DC applied field. The finite difference flux corrected transport (FD-FCT) algorithm is used in the numerical implementation for improving the accuracy and efficiency. Then the tempo-spatial distributions of the gap space electric field and electron velocity are calculated from the microscopic mechanism, and the dynamic behaviors of charged particles are obtained in detail. Meanwhile, the tempo-spatial critical point of the avalanche-to-streamer in this model is discovered, and several microscopic parameters are also investigated. The results showed that the entire gap discharge process can be divided into two phases of avalanche and streamer according to Raether-Meek criterion; the electron density within the discharge channel is lower compared to that of positive and negative ions; space charge effect is a dominant factor for the distortion of spatial electric field, making the discharge channel expand toward both electrodes faster; photoionization provides seed electrons for a secondary electron avalanche, promoting the formation and development speed of the streamer.  相似文献   

17.
Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC(0-4300 V,0-500 Hz) and DC(0-3300 V) electric fields were studied.I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 10~0-10~2 μA,the electron density 10~(15)-10~(16) m~(-3) and further the power dissipation 0.7 W in the reaction zone.At the same time,the meso-scale premixed flame conductivity10~(-4)-10~(-3) Ω~(-1)·m~(-1) asa function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate.Moreover,the influence of the collision sheath relating to Debye length(31-98 μm) and the contamination layer of an active electrode on measurements was discussed,based on the combination of simulation and theoretical analysis.As a result,the electrode sheath dimension was evaluated to less than 0.5 mm,which indicated a complex effect of the collision sheath on the current measurements.The surface contamination effect of an active electrode was further analyzed using the SEM imaging method,which showed elements immigration during the contamination layer formation process.  相似文献   

18.
The oxygen plasma reactor based on dielectric barrier discharge principle can produce a high concentration of reactive oxygen species, which can cooperate with hydraulic cavitation gas–liquid mixer to realize the application of advanced oxidation technology in water treatment. In this technology, the work pressure of the oxygen plasma reactor is decreased by the vacuum suction effect generated in the snap-back section of the gas–liquid mixed container. In this paper, the characteristics of single micro-discharge at different pressures were investigated with the methods of discharge image, electrical characteristics and spectral diagnosis, in order to analyze the electrical characteristics and reactive oxygen species generation efficiency of oxygen plasma reactor at the pressure range from 60 kPa to 100 kPa. The study indicated that, when the pressure decreases, the duty ratio of ionization in the discharge gap and number of electrons with high energy increases, leading to a rise in reactive oxygen species production. When the oxygen reaches the maximum ionization, the concentration of reactive oxygen species is the highest. Then, the discharge intensity continues to increase, producing more heat, which will decompose the ozone and lower the production of reactive oxygen species. The oxygen plasma reactor has an optimum working pressure at different input powers, which makes the oxygen plasma reactor the most efficient in generating reactive oxygen species.  相似文献   

19.
An experimental system of AC arc discharge in water was designed with pole-pole electrodes and a peak voltage of 1500 V and a test circuit was set up using virtual instrument technology. The mechanism of an AC plasma arc generated in water was analyzed. The voltage- current characteristic of the AC plasma arc was obtained from the waveform. The temperature characteristic was tested with a spectrum diagnosis system, and the effect of different electrode materials on the striking voltage and peak current was analyzed. The results show that when a power supply of 6 KW is applied on electrodes with a gap of 2 mm in water, the striking voltage is from 900 to 1300 V, the arc voltage is from 40 to 100 V, the arc current is from 2 to 7 A, and the zero rest period is from 1 to 2 ms. In addition, the arc voltage and current are different for electrodes in aluminum, copper and stainless steel. The arc voltage is lower and the current is higher for an aluminum electrode than those for copper and stainless steel ones. The highest temperature of the arc is 7643 K.  相似文献   

20.
The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号