首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The biggest challenging issue in photocatalysis is efficient separation of the photoinduced carriers and the aggregation of photoexcited electrons on photocatalyst’s surface.In this paper,we report that double metallic co-catalysts Ti3C2 MXene and metallic octahedral(1T)phase tungsten disulfide(WS2)act pathways transferring photoexcited electrons in assisting the photocatalytic H2 evolution.TiO2 nanosheets were in situ grown on highly conductive Ti3C2 MXenes and 1T-WS2 nanoparticles were then uniformly distributed on TiO2@Ti3C2 composite.Thus,a distinctive 1T-WS2@TiO2@Ti3C2 composite with double metallic co-catalysts was achieved,and the content of 1T phase reaches 73%.The photocatalytic H2 evolution performance of 1T-WS2@TiO2@Ti3C2 composite with an optimized 15 wt%WS2 ratio is nearly 50 times higher than that of TiO2 nanosheets because of conductive Ti3C2 MXene and 1T-WS2 resulting in the increase of electron transfer efficiency.Besides,the 1T-WS2 on the surface of TiO2@Ti3C2 composite enhances the Brunauer–Emmett–Teller surface area and boosts the density of active site.  相似文献   

2.
Acetone,as widely used reagents in industry and laboratories,are extremely harmful to the human.So the detection of acetone gas concentrations and leaks in special environments at room temperature is essential.Herein,the nanocomposite combining SnO-SnO2 (p-n junction) and Ti3C2Tx MXene was successfully synthesized by a one-step hydrothermal method.Because of the existence of a small amount of oxygen during the hydrothermal conditions,part of the p-type SnO was oxidized to n-type SnO2,forming in-situ p-n junctions on the surface of SnO.The hamburger-like SnO-SnO2/Ti3C2Tx sensor exhibited improved acetone gas sensing response of 12.1 (Rg/Ra) at room temperature,which were nearly 11 and 4 times higher than those of pristine Ti3C2Tx and pristine SnO-SnO2,respectively.Moreover,it expressed a short recovery time (9 s) and outstanding reproducibility.Because of the different work functions,the Schottky barrier was formed between the SnO and the Ti3C2Tx nanosheets,acting as a hole accumulation layer (HALs) between Ti3C2Tx and tin oxides.Herein,the sensing mechanism based on the formation of hetero-junctions and high conductivity of the metallic phase of Ti3C2Tx MXene in SnO-SnO2/Ti3C2Tx sensors was discussed in detail.  相似文献   

3.
Controlling crystallization and grain growth is crucial for realizing highly efficient hybrid perovskite solar cells (PSCs). In this work, enhanced PSC photovoltaic performance and stability by accelerating perovskite crystallization and grain growth via 2D hexagonal boron nitride (hBN) nanosheet additives incorporated into the active perovskite layer are demonstrated. In situ X-ray scattering and infrared thermal imaging during the perovskite annealing process revealed the highly thermally conductive hBN nanosheets promoted the phase conversion and grain growth in the perovskite layer by facilitating a more rapid and spatially uniform temperature rise within the perovskite film. Complementary structural, physicochemical, and electrical characterizations further showed that the hBN nanosheets formed a physical barrier at the perovskite grain boundaries and the interfaces with charge transport layers, passivating defects, and retarding ion migration. As a result, the power conversion efficiency of the PSC is improved from 17.4% to 19.8%, along with enhanced device stability, retaining ≈90% of the initial efficiency even after 500 h ambient air storage. The results not only highlight 2D hBN as an effective additive for PSCs but also suggest enhanced thermal transport as one of the pathways for improved PSC performance by 2D material additives in general.  相似文献   

4.
Efficient inverted solar cells using TiO(2) nanotube arrays   总被引:2,自引:0,他引:2  
Yu BY  Tsai A  Tsai SP  Wong KT  Yang Y  Chu CW  Shyue JJ 《Nanotechnology》2008,19(25):255202
Using a vertical titania (TiO(2)) nanotube array, an inverted polymer solar cell was constructed with power conversion efficiency up to 2.71%. In this study, self-organized TiO(2) nanotubes arrays were grown by anodizing Ti metal in glycerol electrolyte containing 0.5?wt% NH(4)F and 1.0?wt% H(2)O with 20?V potential. The tube length (~100?nm) was controlled by the thickness of the sputtered titanium layer on the indium-tin oxide (ITO) substrate. The diameter of the tube was approximately 15-25?nm. After annealing in air at 500?°C for 1?h, nanotubes arrays were crystallized to the anatase phase from the initial amorphous state. Following the infiltration of polymeric semiconductor (poly(3-hexylthiophene) and (6,6)-phenyl C(60) butyric acid methyl ester, P3HT:PCBM), the filled TiO(2) layer had an optical absorption over a range from UV to visible light. The high surface-to-volume ratio of the nanotube arrays structure increased the effective area of the active region. The high efficiency of our solar cell is attributed to the vertical TiO(2) nanotube array's enhanced conduction of photo-induced current due to its charge transport capability.  相似文献   

5.
赵雨  李惠  关雷雷  吴嘉达  许宁 《材料导报》2015,29(11):17-21, 29
简要回顾了钙钛矿太阳能电池的发展历史,解释了钙钛矿太阳能电池本质上是固态染料敏化太阳能电池。介绍了钙钛矿太阳能电池的微观发电机理,结合钙钛矿太阳能电池的能级图分析讨论了钙钛矿与电子传输层和空穴传输层的能级匹配。分析总结了钙钛矿太阳能电池的光伏技术参数,包括光生电流密度、开路电压、填充因子、能量转换效率以及光伏性能的稳定性。钙钛矿太阳能电池的能量转换效率、短路电流密度和开路电压均已超过非晶硅薄膜太阳能电池,填充因子与非晶硅薄膜太阳能电池很接近。钙钛矿太阳能电池有希望实现产业化而成为下一代薄膜太阳能电池。指出了钙钛矿太阳能电池大规模市场应用在制造技术上的瓶颈即空穴传输层的造价昂贵,并综述了解决该瓶颈的最新研究工作。  相似文献   

6.
Low temperature solution processed planar‐structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm2) and 20.1% in large size (1 cm2) with moderate residual PbI2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar‐structure perovskite solar cells, showing the planar‐structure perovskite solar cells are very promising.  相似文献   

7.
A simple method for the fabrication of highly photoactive nanocrystalline two-layer TiO(2) electrodes for solar cell applications is presented. Diluted titanium acetylacetonate has been used as a precursor for covering SnO(2):F (FTO) films with dense packed TiO(2) nanocrystallites. The nanoporous thick TiO(2) film follows the dense packed thin TiO(2) film as a second layer. For the latter, amorphous TiO(2) nanoparticles have been successfully synthesized by a sol-gel technique in an acidic environment with pH<1 and hydrothermal growth at a temperature of 200?°C. The acidic nanoparticle gel was neutralized by basic ammonia and a TiO(2) gel of pH?5 was obtained; this pH value is higher than the recently reported value of 3.1 (Park et al 2005 Adv. Mater. 17 2349-53). Highly interconnected, nanoporous, transparent and active TiO(2) films have been fabricated from the pH?5 gel. SEM, AFM and XRD analyses have been carried out for investigation of the crystal structure and the size of nanoparticles as well as the surface morphology of the films. Investigation of the photocurrent-voltage characteristics has shown improvement in cell performance along with the modification of the surface morphology, depending on pH of the TiO(2) gel. Increasing the pH of the gel from 2.1 to 5 enhanced the overall conversion efficiency of the dye-sensitized solar cells by approximately 30%. An energy conversion efficiency of 8.83% has been achieved for the cell (AM1.5, 100 mWcm(-2) simulated sunlight) compared to 6.61% efficiency in the absence of ammonia in the TiO(2) gel.  相似文献   

8.
Despite the high power conversion efficiency (PCE) of perovskite solar cells (PSCs), poor long‐term stability is one of the main obstacles preventing their commercialization. Several approaches to enhance the stability of PSCs have been proposed. However, an accelerating stability test of PSCs at high temperature under the operating conditions in ambient air remains still to be demonstrated. Herein, interface‐engineered stable PSCs with inorganic charge‐transport layers are shown. The highly conductive Al‐doped ZnO films act as efficient electron‐transporting layers as well as dense passivation layers. This layer prevents underneath perovskite from moisture contact, evaporation of components, and reaction with a metal electrode. Finally, inverted‐type PSCs with inorganic charge‐transport layers exhibit a PCE of 18.45% and retain 86.7% of the initial efficiency for 500 h under continuous 1 Sun illumination at 85 °C in ambient air with electrical biases (at maximum power point tracking).  相似文献   

9.
Atmospheric plasma (AP) treatment was carried out on TiO2 nanorods (NRs) that were hydrothermally grown on F-doped SnO2 (FTO)/glass. The effects of AP treatment on the surface of the TiO2 NRs were investigated, where the treatment involved the use of the reactive gases H2, N2, and O2. The surface energy of AP-treated TiO2 NRs was about 1.5 times higher than that of untreated TiO2 NRs (364.3 mJ/m2). After AP treatment, the increase of the peak area ratios of the Ti2O3 and TiO2 peaks in the XPS spectra resulted in a decrease in the number of oxygen vacancies in the TiO2 NRs. The efficiency of a dye-sensitized solar cell (DSSC) based on the N2-plasma-treated TiO2 NRs, which was approximately 1.11%, was about 79% higher than that of a DSSC based on the untreated TiO2 NRs.  相似文献   

10.
In planar perovskite solar cells, it is vital to engineer the extraction and recombination of electron–hole pairs at the electron transport layer/perovskite interface for obtaining high performance. This study reports a novel titanium oxide (TiO2) bilayer with different Fermi energy levels by combing atomic layer deposition and spin‐coating technique. Energy band alignments of TiO2 bilayer can be modulated by controlling the deposition order of layers. The TiO2 bilayer based perovskite solar cells are highly efficient in carrier extraction, recombination suppression, and defect passivation, and thus demonstrate champion efficiencies up to 16.5%, presenting almost 50% enhancement compared to the TiO2 single layer based counterparts. The results suggest that the bilayer with type II band alignment as electron transport layers provides an efficient approach for constructing high‐performance planar perovskite solar cells.  相似文献   

11.
In recent years, flexible perovskite solar cells have received extensive attention and rapid development due to their advantages of lightweight, portability, wearability and applications in near-space. However,due to the limitations of their preparation process and other factors, high-efficiency and large-area flexible perovskite solar cells still have a lot of room for development. In our work, a flexible perovskite solar cell(PEN/ITO/Sn O2/KCl/Cs0.05(MA0.17 FA0.83)0.95 Pb(I0.83 Br0.17)3/spiro/Au) was prepared using a low temperature(no higher than 100°C) solution process, and the device with the highest efficiency of 16.16%was obtained by adjusting the concentration of the KCl modified layer. Meanwhile, the efficiency of the large area(1 cm2) flexible solar cell was higher than 13%. At the same time, the passivation of the KCl interface modification layer inhibits the formation of the defect states, which reduced the surface recombination of the perovskite and improved the carrier transport performance, and the hysteresis effect of the device was also reduced accordingly.  相似文献   

12.
Anatase TiO2 nanocrystals with the high specific surface area were prepared by the hydrothermal treatment of anatase TiO2 sols at the temperature of 150 degrees C and above. When TiO2 sols with a lower content of TiO2 and at a relatively high pH value were hydrothermal treated, the dispersible and nanorod-like TiO2 nanocrystals were formed via the oriented attachment. The nanorod-like TiO2 nanocrystals with an aspect ratio of larger than 5 and a mean diameter of less than 7 nm were obtained in the absence of organic compounds. The as-prepared TiO2 nanocrystals were characterized with X-ray diffraction, transmission electron microscopy and BET surface area techniques. The TiO2 nanostructures were deposited on the FTO conductive glass as the anodic electrode for the dye-sensitized solar cells (DSSCs) and assembled into solar cells. The derived solar cells showed a conversion efficiency of 6.12% under 1 sun illumination of simulated sunlight and external quantum efficiency (EQE) of more than 60% at the wavelength of 550 nm. The DSSCs from the anatase nanorods has a higher open circuit voltage compared to the spherical nanocrystals.  相似文献   

13.
Crack-free TiO(2) nanotube (NT) membranes were obtained by short time re-anodization of a sintered TiO(2) NT array on Ti foil, followed by dilute HF etching at room temperature. The resulting freestanding TiO(2) membranes were opaque with a slight yellow color having one end open and another end closed. The membranes were then fixed on transparent fluorine-tin-oxide glass using a thin layer of screen-printed TiO(2) nanoparticles (NPs) as a binding medium. It was found that low temperature treatment of the resulting NT/NP film under appropriate pressure before sintering at 450?°C was critical for successful fixation of the NT membrane on the NP layer. The resulting films with open-ends of NT membranes facing the NP layer (open-ends down, OED, configuration) exhibited better interfacial contact between NTs and NPs than those with closed-ends facing the NP layer (closed-ends down, CED, configuration). The cells with an OED configuration exhibit higher external quantum efficiency, greater charge transfer resistance from FTO/TiO(2) to electrolyte, and better dye loading compared to CED configurations. The solar cells with the OED configuration gave 6.1% energy conversion efficiency under AM1.5G condition when the commercial N719 was used as a dye and I(-)/I(3)(-) as a redox couple, showing the promise of this method for high efficiency solar cells.  相似文献   

14.
杨绍斌  张琴  沈丁  董伟  刘超 《材料导报》2017,31(10):1-5
以钛酸丁酯为前驱物,无水乙醇为溶剂,采用溶胶-凝胶法和热处理法制备了钠离子电池TiO_2/还原氧化石墨烯复合负极材料(TiO_2/RGO),研究了溶胶-凝胶法过程中反应物钛酸丁酯滴加速率对TiO_2/RGO复合材料形貌结构及储钠性能的影响。结果表明,TiO_2/RGO复合材料由锐钛矿相TiO_2和还原氧化石墨烯组成,TiO_2富集在RGO片层边缘。电化学测试结果表明,随着滴加速率的增大,首次放电比容量和库伦效率呈现先增大后减小的趋势;当滴加速率为1.0mL/min时,TiO_2/RGO复合材料具有良好的储钠性能,在1C(1C=20mA·g~(-1))倍率下首次放电比容量和库伦效率分别为140.14mAh·g~(-1)和27.92%,具有良好的循环和倍率性能。  相似文献   

15.
We present a device based study into the operation of liquid electrolyte dye-sensitized solar cells (DSSC's) using organic dyes. We find that, for these systems, it is entirely necessary to employ a compact TiO2 layer between the transparent fluorine doped SnO2 (FTO) anode and the electrolyte in order to reduce charge recombination losses. By incorporation of a compact layer, the device efficiency can be increased by over 160% under simulated full sun illumination and more than doubled at lower light intensities. This is strong evidence that the more widely employed ruthenium based sensitizers act as to "insulate" the anode against recombination losses and that many planar organic dyes employed in DSSC's could greatly benefit from the use of a compact TiO2 blocking layer. This is in strong contrast to DSSC's sensitized with ruthenium based systems, where the introduction of compact TiO2 has only marginal effects on conversion efficiencies.  相似文献   

16.
Heterojunction interfaces in perovskite solar cells play an important role in enhancing their photoelectric properties and stability.Till date,the precise lattice arrangement at TiO2/CH3NH3PbI3 heterojunction interfaces has not been investigated clearly.Here,we examined a TiO2/CH3NH3PbI3 interface and found that a heavy atomic layer exists in such interfaces,which is attributed to the vacancies of methylammonium (MA) cation groups.Further,first-principles calculation results suggested that an MA cation-deficient surface structure is beneficial for a strong heterogeneous binding between TiO2 and CH3NH3PbI3 to enhance the interface stability.Our research is helpful for further understanding the detailed interface atom arrangements and provides references for interfacial modification in perovskite solar cells.  相似文献   

17.
Nanoporous Ti metal film electrodes for use as photoanodes in dye-sensitized solar cells (DSSCs) were deposited directly on the nanoporous TiO2 layer using the two-step RF magnetron sputtering technique. The Ti film electrode replaces the transparent conducting oxide (TCO) layer. The effect of substrate heating during the deposition of the Ti film was studied to improve the porosity and columnar array of the film pores and the resulting cell efficiency. The porous Ti layer (-41 microm) with low sheet resistance (-1.7 omega/sq) was obtained by deposition at 250 degrees C. The porous Ti layer collects electrons from the TiO2 layer and allows the diffusion of I-/I3(-) through the holes. The DSSC efficiency (eta) using porous Ti layers with highly columnar structures was measured with the highest conversion efficiency of -5.77%; the other photovoltaic properties were ff: 0.76, V(oc): 0.72 V, and J(sc): 10.6 mA/cm2.  相似文献   

18.
Huang S  Guo X  Huang X  Zhang Q  Sun H  Li D  Luo Y  Meng Q 《Nanotechnology》2011,22(31):315402
The structure of fibrous dye-sensitized solar cells, which were constructed by a TiO(2) nanotube array on Ti wire as the photoanode twisted by a Pt wire counter electrode, has been first systematically investigated by accurately controlling the thread pitch distance of screwed Pt wire. It has been revealed that the thread pitch will strongly influence the photovoltaic performance and kinetic processes in fibrous solar cells. The effect of the length of the TiO(2) nanotube on cell performance has also been discussed. After optimization, a relatively universal optimized thread pitch value of 1 mm for fibrous DSCs has been proved and the light-to-electricity conversion efficiency has been remarkably improved to 5.84%.  相似文献   

19.
Wearable devices are mainly based on plastic substrates, such as polyethylene terephthalate and polyethylene naphthalate, which causes environmental pollution after use due to the long decomposition periods. This work reports on the fabrication of a biodegradable and biocompatible transparent conductive electrode derived from bamboo for flexible perovskite solar cells. The conductive bioelectrode exhibits extremely flexible and light‐weight properties. After bending 3000 times at a 4 mm curvature radius or even undergoing a crumpling test, it still shows excellent electrical performance and negligible decay. The performance of the bamboo‐based bioelectrode perovskite solar cell exhibits a record power conversion efficiency (PCE) of 11.68%, showing the highest efficiency among all reported biomass‐based perovskite solar cells. It is remarkable that this flexible device has a highly bendable mechanical stability, maintaining over 70% of its original PCE during 1000 bending cycles at a 4 mm curvature radius. This work paves the way for perovskite solar cells toward comfortable and environmentally friendly wearable devices.  相似文献   

20.
何云龙  沈沪江  王炜  袁慧慧 《材料导报》2018,32(21):3677-3688
柔性太阳能电池具有轻便、可弯曲的优点,可用于可穿戴设备等器件的即时充电,具有广阔的应用前景,受到持续广泛的关注。柔性太阳能电池制备中的关键在于基材以及与之相关的电极材料的制备。本文综述了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池近几年的发展情况,着重介绍了柔性染料敏化太阳能电池光阳极、对电极以及柔性钙钛矿太阳能电池的底电极和电子传输层。结果发现高温烧结目前仍是制备高效染料敏化太阳能电池光阳极不可避免的方法,而对电极则不受这一限制并且已经有多种材料的效率超过了高温烧结的铂。柔性钙钛矿太阳能电池的研究重点是用其他材料代替底电极中柔性较差的ITO以及高温烧结的电子传输材料TiO2,并且都取得显著成效。在此基础上,展望了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池未来的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号