首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of dairy science》2022,105(2):1014-1027
Several factors influence the composition of milk. Among these, genetic variation within and between cattle breeds influences milk protein composition, protein heterogeneity, and their posttranslational modifications. Such variations may further influence technological properties, which are of importance for the utilization of milk into dairy products. Furthermore, these potential variations may also facilitate the production of differentiated products (e.g., related to specific breeds or specific genetic variants). The objective of this study was to investigate the genetic variation and relative protein composition of the major proteins in milk from 6 native Norwegian dairy breeds representing heterogeneity in geographical origin, using the modern Norwegian breed, Norwegian Red, as reference. In total, milk samples from 144 individual cows were collected and subjected to liquid chromatography-electrospray ionization/mass spectrometry–based proteomics for identification of genetic and posttranslational modification isoforms of the 4 caseins (αS1-CN, αS2-CN, β-CN, κ-CN) and the 2 most abundant whey proteins (α-lactalbumin and β-lactoglobulin). Relative quantification of these proteins and their major isoforms, including phosphorylations of αS1-CN and glycosylation of κ-CN, were determined based on UV absorbance. The presence and frequency of genetic variants of the breeds were found to be very diverse and it was possible to identify rare variants of the CN, which, to our knowledge, have not been identified in these breeds before. Thus, αS1-CN variant D was identified in low frequency in 3 of the 6 native Norwegian breeds. In general, αS1-CN was found to be quite diverse between the native breeds, and the even less frequent A and C variants were furthermore detected in 1 and 5 of the native breeds, respectively. The αS1-CN variant C was also identified in samples from the Norwegian Red cattle. The variant E of κ-CN was identified in 2 of the native Norwegian breeds. Another interesting finding was the identification of αS2-CN variant D, which was found in relatively high frequencies in the native breeds. Diversity in more common protein genetic variants were furthermore observed in the protein profiles of the native breeds compared with milk from the high-yielding Norwegian Reds, probably reflecting the more diverse genetic background between the native breeds.  相似文献   

2.
Milk protein concentrate (79% protein) reconstituted at 13.5% (w/v) protein was heated (90 °C, 25 min, pH 7.2) with or without added calcium chloride. After fractionation of the casein and whey protein aggregates by fast protein liquid chromatography, the heat stability (90 °C, up to 1 h) of the fractions (0.25%, w/v, protein) was assessed. The heat-induced aggregates were composed of whey protein and casein, in whey protein:casein ratios ranging from 1:0.5 to 1:9. The heat stability was positively correlated with the casein concentration in the samples. The samples containing the highest proportion of caseins were the most heat-stable, and close to 100% (w/w) of the aggregates were recovered post-heat treatment in the supernatant of such samples (centrifugation for 30 min at 10,000 × g). κ-Casein appeared to act as a chaperone controlling the aggregation of whey proteins, and this effect was stronger in the presence of αS- and β-casein.  相似文献   

3.
The aim of this study was to estimate genetic parameters for blood β-hydroxybutyrate (BHB) predicted from milk spectra and for clinical ketosis (KET), and to examine genetic association of blood BHB with KET and milk production traits (milk, fat, protein, and lactose yields, and milk fat, protein, and lactose contents). Data on milk traits, KET, and milk spectra were obtained from the Norwegian Dairy Herd Recording System with legal permission from TINE SA (Ås, Norway), the Norwegian Dairy Association that manages the central database. Data recorded up to 120 d after calving were considered. Blood BHB was predicted from milk spectra using a calibration model developed based on milk spectra and blood BHB measured in Polish dairy cows. The predicted blood BHB was grouped based on days in milk into 4 groups and each group was considered as a trait. The milk components for test-day milk samples were obtained by Fourier transform mid-infrared spectrometer with previously developed calibration equations from Foss (Hillerød, Denmark). Veterinarian-recorded KET data within 15 d before calving to 120 d after calving were used. Data were analyzed using univariate or bivariate linear animal models. Heritability estimates for predicted blood BHB at different stages of lactation were moderate, ranging from 0.250 to 0.365. Heritability estimate for KET from univariate analysis was 0.078, and the corresponding average estimate from bivariate analysis with BHB or milk production traits was 0.002. Genetic correlations between BHB traits were higher for adjacent lactation intervals and decreased as intervals were further apart. Predicted blood BHB at first test day was moderately genetically correlated with KET (0.469) and milk traits (ranged from ?0.367 with protein content to 0.277 with milk yield), except for milk fat content from across lactation stages that had near zero genetic correlation with BHB (0.033). These genetic correlations indicate that a lower BHB is genetically associated with higher milk protein and lactose contents, but with lower yields of milk, fat, protein, and lactose, and with lower frequency of KET. Estimates of genetic correlation of KET with milk production traits were from ?0.333 (with protein content) to 0.178 (with milk yield). Blood BHB can routinely be predicted from milk spectra analyzed from test-day milk samples, and thereby provides a practical alternative for selecting cows with lower susceptibility to ketosis, even though the correlations are moderate.  相似文献   

4.
This study was performed to evaluate α-tocopherol and β-carotene contents of pasture milk under ordinary Sicilian farming conditions. Fourteen dairy farms were allocated into 2 balanced groups on the basis of cultivated (CULT) or spontaneous (SPO) pasture type feeding. Bulk milk per farm was collected 4 times from February through April at 3-wk intervals. Pasture botanical and diet composition, diet nutritional quality, milk yield and composition were estimated each time. Pasture intake levels were calculated based on feed analyses, hay and concentrate amounts fed, and milk yield and chemical composition. According to pasture intake, the farms were split into low pasture intake (LPI; <29.5% of dry matter) and high pasture intake (HPI; >29.5% of dry matter) groups. Milk samples per farm were analyzed for α-tocopherol and β-carotene contents by HPLC. The SPO group had higher levels of α-tocopherol and β-carotene in milk (0.7 and 0.3 mg/L, respectively) and milk fat (19.0 and 7.5 mg/kg fat, respectively) compared with the CULT group in milk (0.5 and 0.2 mg/L, respectively) and milk fat (14.6 and 4.9 mg/kg, respectively). High pasture intake compared with LPI increased α-tocopherol in milk fat (18.0 and 16.0 mg/kg of fat, respectively). However, only in the SPO (not in CULT), HPI compared with LPI increased milk α-tocopherol (0.8 vs. 0.6 mg/L, respectively), milk β-carotene (0.3 vs. 0.2 mg/L, respectively), and milk fat β-carotene (8.4 vs. 6.6 mg/kg, respectively). Results may be related to the different botanical composition of the respective pasture types and pasture intake. Spontaneous pasture compared with CULT contained a higher mass proportion of Asteraceae, Fabaceae, Cruciferae, Euphorbiaceae, and Malvaceae plants. Milk and milk fat α-tocopherol levels were higher on test-days (TD)-1, TD-2, and TD-4 compared with TD-3. For HPI farms, milk fat β-carotene content was higher on the first 2 TD compared with the last 2 TD. These differences could be related to plant biological stage. On Sicilian dairy farms, the highest milk α-tocopherol and β-carotene contents may be obtained feeding high levels of SPO pasture in the spring.  相似文献   

5.
《Journal of dairy science》2022,105(10):7891-7903
The amount of intact casein provided by dairy ingredients is a critical parameter in dairy-based imitation mozzarella cheese (IMC) formulation because it has a significant effect on unmelted textural parameters such as hardness. From a functionality perspective, rennet casein (RCN) is the preferred ingredient. Milk protein concentrate (MPC) and micellar casein concentrate (MCC) cannot provide the required functionality due to the higher steric stability of casein micelle. However, the use of transglutaminase (TGase) has the potential to modify the surface properties of MPC and MCC and may improve their functionality in IMC. The objective of this study was to determine the effect of TGase-treated MPC and MCC powders on the unmelted textural properties of IMC and compare them with IMC made using commercially available RCN. Additionally, we studied the degree of crosslinking by TGase in MPC and MCC retentates using capillary gel electrophoresis. Three lots of MCC and MPC retentate were produced from pasteurized skim milk via microfiltration and ultrafiltration, respectively, and randomly assigned to 1 of 3 treatments: no TGase (control); low TGase: 0.3 units/g of protein; and high TGase: 3.0 units/g of protein, followed by inactivation of enzyme (72°C for 10 min), and spray drying. Each MCC, MPC, and RCN was then used to formulate IMC that was standardized to 21% fat, 1% salt, 48% moisture, and 20% protein. The IMC were manufactured by blending, mixing, and heating ingredients (4.0 kg) in a twin-screw cooker. The capillary gel electrophoresis analysis showed extensive inter- and intramolecular crosslinking. The IMC formulation using the highest TGase level in MCC or MPC did not form an emulsion because of extensive crosslinking. In MPC with a high level of TGase, whey protein and casein crosslinking were observed. In contrast, crosslinking and hydrolysis of proteins were observed in MCC. The IMC made from MCC powder had significantly higher texture profile analysis hardness compared with the corresponding MPC powder. Further, many-to-one (multiple) comparisons using the Dunnett test showed no significant differences between IMC made using RCN and treatment powders in hardness. Our results demonstrated that TGase treatment causes crosslinking hydrolysis of MCC and MPC at higher TGase levels, and MPC and MCC have the potential to be used as ingredients in IMC applications.  相似文献   

6.
《Journal of dairy science》2022,105(10):7904-7916
Melt and stretch properties in dairy-based imitation mozzarella cheese (IMC) are affected by the amount of intact casein provided by dairy ingredients in the formulation. Rennet casein (RCN) is the preferred ingredient to provide intact casein in a formulation. Ingredients produced using membrane technology, such as milk protein concentrate (MPC) and micellar casein concentrate (MCC), are unable to provide the required functionality. However, the use of transglutaminase (TGase) has potential to modify the physical properties of MPC or MCC and may improve their functionality in IMC. The objective of this study was to determine the effect of TGase-treated MPC and MCC retentates on melt and stretch properties when they are used in IMC and to compare them with IMC made using RCN. The MCC and MPC retentates were produced using 3 different lots of pasteurized skim milk and treated with 3 levels of TGase enzyme: no TGase (control), low TGase: 0.3 units/g of protein, and high TGase: 3.0 units/g of protein. Each of the MCC and MPC treatments was heated to 72°C for 10 min to inactivate TGase and then spray dried. Each MCC, MPC, and RCN powder was then used in an IMC formulation that was standardized to 48% moisture, 21% fat, 20% protein, and 1% salt. The IMC were manufactured in a twin-screw cooker by blending, mixing, and heating various ingredients (4.0 kg). Due to extensive crosslinking, the IMC formulation with the highest TGase level (MCC or MPC) did not form an emulsion. The IMC made from MCC treatments had significantly higher stretchability on pizza compared with their respective MPC treatments. The IMC made from TGase-treated MCC and MPC had significantly lower melt area and significantly higher transition temperature (TT) and stretchability compared with their respective controls. Comparison of IMC made using TGase-treated MCC and MPC to the RCN IMC indicated no difference in TT or texture profile analysis-stretchability; however, the Schreiber melt test area was significantly lower. Our results demonstrated that TGase treatment modifies the melt and stretch characteristics of MCC and MPC in IMC applications, and TGase-treated MPC and MCC can be used to replace RCN in IMC formulations.  相似文献   

7.
8.
The aim of this study was to investigate the effect exerted by the relative content of κ-casein (κ-CN) B in bulk milk κ-CN on coagulation properties and cheese yield of 3 Italian cheese varieties (Montasio, Asiago, and Caciotta). Twenty-four cheese-making experiments were carried out in 2 industrial and 1 small-scale dairy plant. Detailed protein composition of bulk milk of 380 herds providing milk to these dairies was analyzed by reversed-phase HPLC. To obtain 2 experimental milks differing in the relative content of κ-CN B in κ-CN, herds were selected on the basis of bulk milk protein composition and relative content of κ-CN genetic variants. Milk was collected and processed separately for the 2 groups of selected herds. A difference of 20% in the relative content of κ-CN B in κ-CN was obtained for the 2 experimental milks for Montasio and a difference of 15% for Asiago and Caciotta. The 2 experimental milks were of similar protein and CN content, casein number, pH, CN composition, and β-CN genetic composition. For each cheese-making trial, amounts of milk, ranging from 2,000 to 6,000 kg, were manufactured. Each vat contained milk collected at least from 4 dairy herds. Cheese yield after brining and at the end of the aging was recorded. Milk with a greater proportion of κ-CN B in κ-CN (HIGHB) exhibited similar coagulation properties and greater cheese yield compared with milk with a lower proportion of κ-CN B in κ-CN (LOWB). The increased cheese yield observed for HIGHB when manufacturing Montasio cheese was ascribed to a greater fat content compared with LOWB. The probability of HIGHB giving a cheese yield 5% greater than that of LOWB ranged from 51 to 67% for Montasio cheese, but was less than 21% for Asiago and Caciotta cheeses. Variation in relative content of κ-CN B in κ-CN content did not relevantly affect industrial cheese yield when milks of similar CN composition were processed. An indirect effect due to the increased κ-CN content of κ-CN B milk is thought to explain the favorable effects of κ-CN B on cheese yield reported in the literature.  相似文献   

9.
The effect of fortification of reconstituted skim milk with different levels of a whey protein mixture containing a 1:2 ratio of α-lactalbumin (α-la) and different genetic variants of β-lactoglobulin (β-LG) on the rheological properties of acid milk gels, formed by acidification with glucono-δ-lactone, was investigated. Milk samples were either unheated or heated at 80°C for 30 min before acidification. Acid gels prepared from unheated skim milk had very low G′ values, long gelation times and low gelation pH. Samples prepared from heated milk had markedly higher G′ values, a reduced gelation time and an increased gelation pH. The addition of increasing levels of whey protein mixtures containing β-LG B or β-LG C to the milk prior to heating and acidification caused an almost linear increase in the G′. In contrast, whey protein mixtures containing β-LG A caused a progressive increase in the G′ with added protein levels up to about 0.7% (w/w) but little further change at higher addition levels. A mixture of the A and B variants of β-LG gave an intermediate behaviour between those of the A and B variants. In all samples, the G′ value at 5°C was approximately twice that at 30°C so that the relative differences as a result of the β-LG genetic variants were similar for the two temperatures.  相似文献   

10.
《Journal of dairy science》2023,106(9):5853-5879
The aim of this systematic review was to summarize the literature assessing the effects of milk feeding practices on behavior, health, and performance on dairy calves. Peer-reviewed, published articles, written in English, directly comparing the effects of milk allowance, milk feeding methods, or milk feeding frequency on dairy calves were eligible for inclusion. Outcome measures could include sucking behavior, sucking on a teat (nutritive sucking, non-nutritive sucking on a teat), abnormal sucking behavior (non-nutritive sucking on pen fixtures, other oral behaviors, or cross-sucking), signs of hunger (vocalizations or unrewarded visits at the milk feeder), activity (lying time or locomotor play), feeding behavior (milk intake, starter intake, milk meal duration, or starter meal duration), growth (body weight or average daily gain), and health (occurrence of diarrhea, respiratory disease, or mortality). We conducted 2 targeted searches using Web of Science and PubMed to identify key literature. The resulting articles underwent a 2-step screening process. This process resulted in a final sample of 94 studies. The majority of studies investigated milk allowance (n = 69). Feeding higher milk allowances had a positive or desirable effect on growth, reduced signs of hunger, and increased locomotor play behavior during the preweaning period, whereas starter intake was reduced. Studies addressing health pointed to no effect of milk allowance, with no consistent evidence indicating that higher milk allowances result in diarrhea. Studies addressing milk feeding methods (n = 14) found that feeding milk by teat reduced cross-sucking and other abnormal oral behaviors. However, results on the effect of access to a dry teat were few and mixed. Milk feeding frequency (n = 14 studies) appeared to have little effect on feed intakes and growth; however, there is some evidence that calves with lower feeding frequency experience hunger. Overall, findings strongly suggest feeding higher volumes of milk using a teat; however, further work is needed to determine the optimal feeding frequency for dairy calves.  相似文献   

11.
It is well known what genetic and nutritional factors affect growth and meat quality, but there is less information related to interactive importance of them during the productive process. These systems are mainly based on rangelands affecting animal growth in early stages of life thus producing smaller cattle and reduced retail yield comparing with well grown calves. During the last ten years, Uruguayan livestock production systems have been intensified using improved pastures, concentrates and better genetic. The main breeds in Uruguay are Hereford, Angus and their crosses. These British breeds are under genetic evaluation programs which consider carcass trait parameters. It is important for beef industry to know if interactions between genotype and nutrition during growth and fattening phases are influencing production, efficiency, carcass weight and meat quality attributes. The aim of this article is to present information obtained under different feeding strategies during the post weaning and fattening and their influence on those attributes.  相似文献   

12.
《Journal of dairy science》2022,105(1):242-254
The objective of this study was to investigate the effect of cow genotype and parity on dry matter intake (DMI) and production efficiencies in pasture-based systems. Three dairy cow genotypes were evaluated over 3 yr; 40 Holstein-Friesian (HF), 40 Jersey × HF (JEX), and 40 Norwegian Red × JEX (3WAY) each year, with each genotype grazed in equal numbers on 1 of 4 grazing treatments in a 2 × 2 factorial arrangement of treatments [diploid or tetraploid perennial ryegrass (Lolium perenne L.) with or without white clover (Trifolium repens L.)]. A total of 208 individual cows were used during the experiment. The effect of parity (lactation 1, 2, and 3+) was also evaluated. Individual DMI was estimated 8 times during the study, 3 times in 2015 and in 2017, and twice in 2016, using the n-alkane technique. Days in milk at each DMI measurement period were 64, 110, and 189, corresponding to spring, summer, and autumn. Measures of milk production efficiency calculated were total DMI/100 kg of body weight (BW), milk solids (kg fat + protein; MSo)/100 kg of BW, solids-corrected milk (SCM)/100 kg of BW, and unité fourragère lait (net energy requirements for lactation equivalent of 1 kg of standard air-dry barley; UFL) available for standard (4.0% fat and 3.1% protein content) milk production after accounting for maintenance. During the DMI measurement periods HF had a greater milk yield (23.2 kg/cow per d) compared with JEX and 3WAY (22.0 and 21.9 kg/cow per d, respectively) but there was no difference in MSo yield. Holstein-Friesian and JEX, and JEX and 3WAY had similar DMI, but HF had greater total DMI than 3WAY (DMI was 17.2, 17.0, and 16.7 kg/cow per d for HF, JEX, and 3WAY, respectively). Jersey × Holstein-Friesian cows were the most efficient for total DMI/100 kg of BW, SCM/100 kg of BW, and MSo/100 kg of BW (3.63, 4.96, and 0.39 kg/kg of BW) compared with HF (3.36, 4.51, and 0.35 kg/kg of BW) and 3WAY (3.45, 4.63, and 0.37 kg/kg of BW), respectively. Unité fourragère lait available for standard milk production after accounting for maintenance was not different among genotypes. As expected, DMI differed significantly among parities with greater parity cows having higher DMI and subsequently higher milk and MSo yield. Although all 3 genotypes achieved high levels of DMI and production efficiency, JEX achieved the highest production efficiency. Some of the efficiency gains (SCM/100 kg of BW, MSo/100 kg of BW, and total DMI/100 kg of BW) achieved with JEX decreased when the third breed (Norwegian Red) was introduced.  相似文献   

13.
This study investigated genomic prediction using medium-density (~54,000; 54K) and high-density marker panels (~777,000; 777K), based on data from Nordic Holstein and Red Dairy Cattle (RDC). The Holstein data comprised 4,539 progeny-tested bulls, and the RDC data 4,403 progeny-tested bulls. The data were divided into reference data and test data using October 1, 2001, as a cut-off date (birth date of the bulls). This resulted in about 25% genotyped bulls in the Holstein test data and 20% in the RDC test data. For each breed, 3 data sets of markers were used to predict breeding values: (1) 54K data set with missing genotypes, (2) 54K data set where missing genotypes were imputed, and (3) imputed high-density (HD) marker data set created by imputing the 54K data to the HD data based on 557 bulls genotyped using a 777K single nucleotide polymorphism chip in Holstein, and 706 bulls in RDC. Based on the 3 marker data sets, direct genomic breeding values (DGV) for protein, fertility, and udder health were predicted using a genomic BLUP model (GBLUP) and a Bayesian mixture model with 2 normal distributions. Reliability of DGV was measured as squared correlations between deregressed proofs (DRP) and DGV corrected for reliability of DRP. Unbiasedness was assessed by regression of DRP on DGV, based on the bulls in the test data sets. Averaged over the 3 traits, reliability of DGV based on the HD markers was 0.5% higher than that based on the 54K data in Holstein, and 1.0% higher than that in RDC. In addition, the HD markers led to an improvement of unbiasedness of DGV. The Bayesian mixture model led to 0.5% higher reliability than the GBLUP model in Holstein, but not in RDC. Imputing missing genotypes in the 54K marker data did not improve genomic predictions for most of the traits.  相似文献   

14.
The objective of this study was to evaluate the ability of milk infrared spectra to predict blood β-hydroxybutyrate (BHB) concentration for use as a management tool for cow metabolic health on pasture-grazed dairy farms and for large-scale phenotyping for genetic evaluation purposes. The study involved 542 cows (Holstein-Friesian and Holstein-Friesian × Jersey crossbreds), from 2 farms located in the Waikato and Taranaki regions of New Zealand that operated under a seasonal-calving, pasture-based dairy system. Milk infrared spectra were collected once a week during the first 5 wk of lactation. A blood “prick” sample was taken from the ventral labial vein of each cow 3 times a week for the first 5 wk of lactation. The content of BHB in blood was measured immediately using a handheld device. After outlier elimination, 1,910 spectra records and corresponding BHB measures were used for prediction model development. Partial least square regression and partial least squares discriminant analysis were used to develop prediction models for quantitative determination of blood BHB content and for identifying cows with hyperketonemia (HYK). Both quantitative and discriminant predictions were developed using the phenotypes and infrared spectra from two-thirds of the cows (randomly assigned to the calibration set) and tested using the remaining one-third (validation set). A moderate accuracy was obtained for prediction of blood BHB. The coefficient of determination (R2) of the prediction model in calibration was 0.56, with a root mean squared error of prediction of 0.28 mmol/L and a ratio of performance to deviation, calculated as the ratio of the standard deviation of the partial least squares model calibration set to the standard error of prediction, of 1.50. In the validation set, the R2 was 0.50, with root mean squared error of prediction values of 0.32 mmol/L, which resulted in a ratio of performance to deviation of 1.39. When the reference test for HYK was defined as blood concentration of BHB ≥1.2 mmol/L, discriminant models indicated that milk infrared spectra correctly classified 76% of the HYK-positive cows and 82% of the HYK-negative cows. The quantitative models were not able to provide accurate estimates, but they could differentiate between high and low BHB concentrations. Furthermore, the discriminant models allowed the classification of cows with reasonable accuracy. This study indicates that the prediction of blood BHB content or occurrence of HYK from milk spectra is possible with moderate accuracy in pasture-grazed cows and could be used during routine milk testing. Applicability of infrared spectroscopy is not likely suited for obtaining accurate BHB measurements at an individual cow level, but discriminant models might be used in the future as herd-level management tools for classification of cows that are at risk of HYK, whereas quantitative models might provide large-scale phenotypes to be used as an indicator trait for breeding cows with improved metabolic health.  相似文献   

15.
The objective of this work was to better understand the effect of differences in milk protein composition, and specifically, a change in β-casein to total casein in a milk-based matrix, on growth performance and metabolic and inflammatory responses using a piglet model. Three formulas were optimized for piglets, with similar metabolizable energy, total protein content, and other essential nutrients. Only the protein type and ratio varied between the treatments: the protein fraction of the control diet contained only whey proteins, whereas 2 other matrices contained a whey protein to casein ratio of 60:40, and differed in the amount of β-casein (12.5 and 17.1% of total protein). Piglets fed formula containing whey proteins and caseins, regardless of the concentration of β-casein, showed a significantly higher average daily gain, average daily feed intake, and feed efficiency compared with piglets consuming the formula with only whey protein. Consumption of the formula containing only whey protein showed higher levels of plasma glucagon-like peptide-1 and ghrelin compared with the consumption of formula containing casein and whey protein. A positive correlation was observed between postprandial time and glucagon-like peptide-1 response. The intestinal pro-inflammatory cytokine tumor necrosis factor α increased significantly in piglets fed the whey protein/casein diet compared with those fed whey protein formula. All formula-fed piglets showed a lower level of IL-6 cytokine compared with the ad libitum sow-fed piglets, regardless of composition. No significant differences in the anti-inflammatory IL-10 concentration were observed between treatment groups. Milk protein composition contributed to the regulation of piglets‘ metabolic and physiological responses, with whey protein/casein formula promoting growth performance and a different immune regulatory balance compared with a formula containing only whey protein. Results indicated no differences between treatments containing different levels of β-casein.  相似文献   

16.
Ripening stability of α-tocopherol, γ-tocopherol and β-carotene in cheese was evaluated in relation to different milk vitamin content and to the use of either pasteurised or raw milk. Milk from two farms with different management systems was used to obtain different vitamin content. Milk was divided into two parts, of which only one was pasteurised. Four blocks of cheese were made from each batch and ripened for 0, 15, 30, or 60 days at 14–16 °C. There was a notable variation in cheese vitamin levels, with the differences in milk vitamin content due to farm management having the highest impact. Pasteurisation had no effect on cheese vitamin content. Cheese γ-tocopherol and β-carotene content decreased after 30 and 60 days, respectively, whereas α-tocopherol content remained stable. γ-Tocopherol appeared to be the most efficient antioxidant in cheese, followed by β-carotene. Vitamin stability was not influenced by milk vitamin content or pasteurisation.  相似文献   

17.
18.
《Journal of dairy science》2023,106(7):4698-4710
This study aimed to compare rotational 3-breed crossbred cows of Viking Red, Montbéliarde, and Holstein breeds with purebred Holstein cows for a range of body measurements, as well as different metrics of the cows' productivity and production efficiency. The study involved 791 cows (440 crossbreds and 351 purebreds), that were managed across 2 herds. Within each herd, crossbreds and purebreds were reared and milked together, fed the same diets, and managed as one group. The heart girth, height at withers, and body length were measured, and body condition score (BCS) was determined on all the cows on a single test day. The body weight (BW) of 225 cows were used to develop an equation to predict BW from body size traits, parity, and days in milk, which was then used to estimate the BW of all the cows. Equations from the literature were used to estimate body protein and lipid contents using the predicted BW and BCS. Evidence suggests that maintenance energy requirements may be closely related to body protein mass, and Holstein and crossbred cows may be different in body composition. Therefore, we computed the requirements of net energy for maintenance (NEM) on the basis either of the metabolic weight (NEM-MW: 0.418 MJ/kg of metabolic BW) or of the estimated body protein mass according to a coefficient (NEM-PM: 0.631 MJ/kg body protein mass) computed on the subset comprising the purebred Holstein. On the same day when body measurements were collected, individual test-day milk yield and fat and protein contents were retrieved once from the official Italian milk recording system, and milk was sampled to determine fresh cheese yield. Measures of NEM were used to scale the production traits. Statistical analyses of all variables included the fixed effects of herd, days in milk, parity, and genetic group (purebred Holstein and crossbred), and the herd × genetic group interaction. External validation of the equation predicting BW yielded a correlation coefficient of 0.94 and an average bias of −4.95 ± 36.81 kg. The crossbreds had similar predicted BW and NEM-MW compared with the Holsteins. However, NEM-PM of crossbreds was 3.8% lower than that of the Holsteins, due to their 11% greater BCS and different estimated body composition. The crossbred cows yielded 4.8% less milk and 3.4% less milk energy than the purebred Holsteins. However, the differences between genetic groups were no longer significant when the production traits were scaled on NEM-PM, suggesting that the crossbreds and purebreds have the same productive ability and efficiency per unit of body protein mass. In conclusion, measures of productivity and efficiency that combine the cows' production capability with traits related to body composition and the energy cost of production seem to be more effective criteria for comparing crossbred and purebred Holstein cows than just milk, fat, and protein yields.  相似文献   

19.
《Journal of dairy science》2023,106(7):4666-4681
Corn silage is one of the most common ingredients fed to dairy cattle. Advancement of corn silage genetics has improved nutrient digestibility and dairy cow lactation performance in the past. A corn silage hybrid with enhanced endogenous α-amylase activity (Enogen, Syngenta Seeds LLC) may improve milk production efficiency and nutrient digestibility when fed to lactating dairy cows. Furthermore, evaluating how Enogen silage interacts with different dietary starch content is important because the ruminal environment is influenced by the amount of rumen fermentable organic matter consumed. To evaluate the effects of Enogen corn silage and dietary starch content, we conducted an 8-wk randomized complete block experiment (2-wk covariate period, 6-wk experimental period) with a 2 × 2 factorial treatment arrangement using 44 cows (n = 11/treatment; 28 multiparous, 16 primiparous; 151 ± 42 d in milk; 668 ± 63.6 kg of body weight). Treatment factors were Enogen corn silage (ENO) or control (CON) corn silage included at 40% of diet dry matter and 25% (LO) or 30% (HI) dietary starch. Corn silage used in CON treatment was a similar hybrid as in ENO but without enhanced α-amylase activity. The experimental period began 41 d after silage harvest. Feed intake and milk yield data were collected daily, plasma metabolites and fecal pH were measured weekly, and digestibility was measured during the first and final weeks of the experimental period. Data were analyzed using a linear mixed model approach with repeated measures for all variables except for body condition score change and body weight change. Corn silage, starch, week, and their interactions were included as fixed effects; baseline covariates and their interactions with corn silage and starch were also tested. Block and cow served as the random effects. Plasma glucose, insulin, haptoglobin, and serum amyloid A concentrations were unaffected by treatment. Fecal pH was greater for cows fed ENO versus CON. Dry matter, crude protein, neutral detergent fiber, and starch digestibility were all greater for ENO than CON during wk 1, but differences were less by wk 6. The HI treatments depressed neutral detergent fiber digestibility compared with LO. Dry matter intake (DMI) was not affected by corn silage but was affected by the interaction of starch and week; in wk 1, DMI was similar but by wk 6, cows fed HI had 1.8 ± 0.93 kg/d less DMI than LO cows. Milk, energy-corrected milk, and milk protein yields were 1.7 ± 0.94 kg/d, 1.3 ± 0.70 kg/d, and 65 ± 27 g/d greater for HI than LO, respectively. In conclusion, ENO increased digestibility but it did not affect milk yield, component yields, or DMI. Increasing dietary starch content improved milk production and feed efficiency without affecting markers of inflammation or metabolism.  相似文献   

20.
This study compares the occurrence of antimicrobial resistance to erythromycin, ciprofloxacin, and tetracycline among 384 Campylobacter jejuni isolates from humans (245), fresh whole retail chickens (56), raw milk (33), and environmental water (41) collected between 2000 and 2003 in Québec, Canada. Resistance to ciprofloxacin was significantly more frequent in human isolates acquired abroad than in those acquired locally (50 versus 5.9%; P < 0.001); ciprofloxacin resistance was almost absent in water, chicken, and raw milk isolates. In contrast, resistance to erythromycin was significantly more common in chicken than in locally acquired human isolates (16 versus 3.0%, respectively; P < 0.001); no erythromycin resistance was found among water, raw milk, and human isolates acquired abroad. Resistance to tetracycline was significantly more common in chicken and human isolates acquired locally (58.9 and 45.8%, respectively) than in raw milk and water isolates (9.1 and 7.3%, respectively, P < 0.001). Tetracycline resistance was also observed in 44.4% of human isolates acquired abroad. No human isolate was resistant to both ciprofloxacin and erythromycin, but one chicken isolate was resistant to all three antimicrobial agents. Our results suggest that from 2000 to 2003 in Québec, antimicrobial resistance remained stable among locally acquired C. jejuni human clinical isolates and might even have decreased. However, the high erythromycin resistance rate observed among chicken isolates is concerning because of the risk of transmission of such isolates to humans. Additional studies are needed to monitor trends in antimicrobial resistance among food, environment, and human C. jejuni isolates as well as antibiotic use in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号