首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report here a synthetic study on the formation process of hollow polymeric nanospheres based on a simple, core-template-free route, and the effects of polymerization concentration, shell cross-linking, pH, salt concentration and temperature on the size and stability of hollow polymeric nanospheres. The hollow structure of polymeric nanospheres is spontaneously formed by polymerization of acrylic acid monomers inside the chitosan–acrylic acid assemblies. It is found that (i) the hollow structure of nanospheres is stabilized by both physical cross-linking in the inner shell and chemical cross-linking in the outmost shell; (ii) the size of the hollow spheres can be adjusted over the range of 77–500 nm by controlling the concentration of chitosan–acrylic acid assemblies in the reaction system; (iii) the synthesized nanospheres are stimuli-responsive. The size of the hollow nanospheres can be manipulated by changing pH, salt concentration and temperature. Furthermore, with heating and cooling the variation in size of hollow nanospheres is completely reversible and reproducible; (iv) the surface of the hollow nanospheres obtained is chemically active, which provides the functional sites with chemical groups for subsequent chemical reactions at the surface.  相似文献   

2.
Hybrid organic-inorganic materials were prepared by using two different zinc salts and poly(acrylic acid) (PAA). The characterization of the resulting compounds show that polymerlike materials with a decomposition temperature above 673°C can be produced and that the specific zinc salt and synthesis route influence the final properties of these materials. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 861–868, 1997  相似文献   

3.
The structure and rheological behavior of atactic poly(vinyl alcohol) (a-PVA) hydrogels prepared by freeze/thaw cycles were investigated as a function of polymer concentration and number of freeze/thaw cycles. The presence of phases with different mobilities was observed using 13C CP/MAS and DP/MAS NMR experiments. The degree of crystallinity of the a-PVA-rich phase was determined by 1H NMR free decay experiments. Measurements of the shear storage and loss modulus were performed at a fixed frequency of 1 Hz and a strain value of 0.1%, i.e. under conditions where the deformation imposed on the gel structure is entirely reversible. Results thus obtained showed that an increase in the number of freeze/thaw cycles induces an increase in the degree of crystallinity in the polymer-rich phase together with an increase in the storage modulus. The a-PVA hydrogels became more fragile as the number of freeze/thaw cycles was increased. Moreover, both the percentage of protons in a rigid environment measured by 1H NMR and the storage modulus values tended to a limiting value after six freeze/thaw cycles. These results show that the first five or six freeze/thaw cycles play a very important role in determining the hydrogel structure and rheological properties. A more detailed comparison of NMR and rheological data led to the conclusion that the storage modulus is mainly controlled by the a-PVA crystallinity while the hydrogen bond interactions have a much smaller contribution.  相似文献   

4.
A series of nanocomposite hydrogels used for bioadhesive were prepared from acrylic acid, poly(ethylene glycol) methyl ether acrylate, and intercalated hydrotalcite (HT) by photopolymerization. The microstructures of the intercalated HT and sample gels were identified by X‐ray diffraction (XRD). The results showed that the swelling ratio for these nanocomposite hydrogels increased with an increase in HT, but the gel strength and adhesive force for these gels decreased with an increase in HT. The XRD results indicated that the exfoliation of intercalated HT was achieved in the xerogels and swollen gels. Finally, the drug‐release behaviors for these gels were also examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 692–699, 2004  相似文献   

5.
In this study, we intend to adjust the charge properties of the poly(N‐isopropylacrylamide) [Poly(NIPAAm)] gel by using anionic clay and cationic monomer. Hence, two series of nanocomposite hydrogels bearing different charges were designed from NIPAAm, intercalated mica (IM) (NIM‐series) and NIPAAm, IM, trimethyl (acrylamido propyl) ammonium iodide (TMAAI) (NTIM‐series), respectively. The mica was first intercalated with different contents of intercalant, trimethyl (acrylamido propyl) ammonium chloride (TMAACl), based on the cationic exchange capacity (CEC) of mica. The effect of the CEC value of IM and IM content on the charge property, swelling behaviors, mechanical properties, and drug‐release behaviors of the present gels were investigated. Results showed that the negative charges for NIM series gels decrease with increase in CEC values of the IM (from ?11 to ?6 mV), the positive charges for NTIM series gels also decrease with increase in CEC values of the IM (from +36 to +18 mV). The swelling behaviors and mechanical properties for the NTIM gels were significantly enhanced by IM content and CEC values of the IM. The microstructures, morphologies, and drug‐release behaviors in these two series gels are also investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2277–2287, 2007  相似文献   

6.
Summary Copolymeric poly(acrylic acid-co-methyl methacrylate) hydrogels for three different compositions: (90/10), (80/20) and (60/40), have been studied. Drug release has been examined as a function of the hydrogel composition by HPLC (High Pressure Liquid Cromatography). The release experiments were carried out at 37 °C. The fraction of available drug release was linear in t1/2. The values of the diffusional coefficient (0.50<n<1.0) indicate that the nafcillin release mechanism from the hydrogels in study is non-Fickian. The diffusion coefficients for this drug release have been calculated. The molecular diffusion of nafcillin through hydrogels is controlled by the swelling.  相似文献   

7.
Poly(acrylamide‐co‐itaconic acid) (PAAmIA) and poly(acrylic acid‐co‐itaconic acid) (PAAIA) copolymeric hydrogels were prepared with different compositions via free‐radical polymerization. Ethylene glycol dimethacrylate (EGDMA) was used as an original crosslinker for these monomers. Gelation percentages of the monomers were studied in detail and it was found that addition of IA into the monomer mixture decreased the gelation percentage. The variation in swelling values (%) with time, temperature, and pH was determined for all hydrogels. PAA, which is the most swollen hydrogel, has the swelling percentage value of 2000% at pH = 7.4, 37°C. Swelling behaviors were explained with detailed SEM micrographs, which show the morphologic differences between dry and swollen hydrogels. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5994–5999, 2006  相似文献   

8.
王露一  单国荣 《化工学报》2012,63(8):2642-2647
采用紫外光引发聚合制备了含聚环氧乙烷(PEO)的聚(2-丙烯酰胺-2-甲基丙磺酸)(PAMPS)/聚丙烯酰胺(PAM)双网络(DN)水凝胶。使用扫描电子显微镜(SEM)观察了PAMPS单网络水凝胶的结构;测定了PEO改性前后双网络水凝胶的压缩及拉伸性能。PEO改性DN凝胶的第一网络网孔上由于PEO片晶结构引起不同程度的褶皱,这种褶皱起支撑作用;PEO的分子量达到5万时,褶皱的支撑作用最佳,DN凝胶的力学性能最佳;DN凝胶的力学性能随PEO加入量先提高后下降,在PEO加入量为0.1%时,PEO片晶结构加固了DN凝胶的物理交联点,力学性能达到最大,压缩应力达到31.6 MPa;加入更多的PEO阻碍了第一网络的凝胶化,造成网络结构的不连续,从而使DN凝胶的力学性能下降。  相似文献   

9.
Acrylamide (AAm)/acrylic acid (AAc) hydrogels in the cylindirical form were prepared by γ‐irradiating binary systems of AAm/AAc with 2.6–20.0 kGy γ‐rays. The effect of the dose and relative amounts of AAc and pH on the swelling properties, diffusion behavior of water, diffusion coefficients, and network properties of hydrogel systems was investigated. The swelling capacities of AAm/AAc hydrogels were in the range of 1000–3000%, while poly(acrylamide) (PAAm) hydrogels swelled in the range of 450–700%. Water diffusion into hydrogels was found to be non‐Fickian‐type diffusion. Diffusion coefficients of AAm/AAc hydrogels were found between 0.79 × 10?5 and 2.78 × 10?5 cm2 min?1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3570–3580, 2002  相似文献   

10.
A systematic study of water absorbency, thermal, and rheological properties was performed on nanocomposite hydrogels of poly(sodium 4-styrene sulfonate) (PSSNa) and poly(2-acrylamide glycolic acid) (PAAG). Montmorillonite was used as clay filler and was previously modified to hydrogel synthesis by addition of (3-acrylamide propyl)trimethylammonium chloride. Syntheses were carried out by in situ radical polymerization, using N,N-methylen-bis-acrylamide as crosslinker reagent. Nanocomposites showed an exfoliated morphology, confirmed by transmission electron microscopy and X-ray diffraction. The water absorption capacity (WAC) of unloaded PSSNa hydrogel was three times higher than for PAAG; due to clay addition, absorption capacity increased for PSSNa nanocomposites and decreased for PAAG. Finally, rheological properties of nanocomposite hydrogels were studied by both dynamic oscillatory test and shear creep analysis. Results showed improvements on mechanical properties, such as yield point, elastic recovery, and storage modulus as consequence of montmorillonite addition.  相似文献   

11.
Biocompatible and biodegradable pH‐responsive hydrogels based on poly(acrylic acid) (AAc) and chitosan were prepared for controlled drug delivery. These interpolymeric hydrogels were synthesized by a gamma irradiation polymerization technique. The degree of gelation was over 96% and increased as the chitosan or acrylic acid content increased. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of pH 1–12 was investigated. The AAc/chitosan hydrogels showed the highest water content when the 30 vol % AAc and 0.1 wt % chitosan were irradiated with a 30‐kGy radiation dose. Also, an increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 12. The drug, 5‐fluorouracil, was loaded into these hydrogels and the release studies were carried out in simulated gastric and intestinal fluids. The in vitro release profiles of the drugs showed that more than 90% of the loaded drugs were released in the first 1 h at the intestinal pH and the rest of the drug had been released slowly. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3660–3667, 2003  相似文献   

12.
The ability of poly(N-vinylimidazole) hydrogels to bind Cu(II), Co(II), Ni(II), Zn(II), Cd(II), Pb(II), Hg(II), Na(I) and Ca(II) cations, as well as uranyl, vanadium, rhenium, and molybdenum complexes, was studied by a batch equilibrium procedure using atomic absorption spectroscopy and UV-Vis spectrophotometry. The optimum pH for ion adsorption was determined in any case. The influence of the crosslinking degree of the hydrogel on the sorption kinetics and the sorption capacity at equilibrium were also studied. Sorption from the binary mixture Cu(II) + U(VI) was also analyzed at the optimum pH. Elution of the ions adsorbed from single and binary solutions was achieved in all cases. A selective desorption of loaded hydrogels with two types of ions was attained. The general conclusion is that poly(N-vinylimidazole) hydrogels are excellent materials for retention of all the ions studied here [except for Pb(II), Na(I), and Ca(II)]. The elution, which can be selective, allows regeneration of the hydrogel. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1109–1118, 1998  相似文献   

13.
The composites of pH‐responsive poly(vinyl alcohol)/poly(acrylic acid) hydrogel and activated carbon fibers (ACFs) were prepared as sustained drug release system with excellent mechanical properties. The mechanical properties of hydrogels were improved greatly by addition of ACFs. The thinner ACFs were more effective in increasing the mechanical properties of composite hydrogels. The cumulative amount of release and the release period were dependent on the surface area and the pore volume of ACFs. The drug release was maximized at basic condition due to the pH‐sensitive hydrogel matrices and the initial bust phenomenon was alleviated by incorporating ACFs in the hydrogels. The drug release was sustained about four times longer and the mechanical property was increased about 2.6 times higher because ACFs worked as drug reservoir and reinforcement. Cytotoxicity evaluation confirmed the biocompatible characteristics of the ACFs‐containing hydrogels. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Copolymers composed of poly(vinyl alcohol) (PVA) and poly(dimethylsiloxane) (PDMS) were crosslinked with chitosan to prepare semi‐interpenetrating polymer network (IPN) hydrogels by an ultraviolet (UV) irradiation method for application as potential biomedical materials. PVA/PDMS copolymer and chitosan was cast to prepare hydrogel films, followed by a subsequent crosslinking with 2,2‐dimethoxy‐2‐phenylacetophenone as a nontoxic photoinitiator by UV irradiation. Various semi‐interpenetrating polymer networks (semi‐IPNs) were prepared from different weight ratios of chitosan and the copolymer of PVA/PDMS. Photocrosslinked hydrogels exhibited an equilibrium water content (EWC) in the range of 65–95%. Swelling behaviors of these hydrogels were studied by immersion of the gels in various buffer solutions. Particularly, the PCN13 as the highest chitosan weight ratio in semi‐IPN hydrogels showed the highest EWC in time‐dependent and pH‐dependent swelling. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2591–2596, 2002  相似文献   

15.
In this article, poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogels were synthesized by bulk free-radical copolymerization of 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) for soft contact lens(SCL)-based ophthalmic drug delivery system. The copolymer was characterized with FT-IR and SEM, the swelling property of the hydrogels were studied by gravimetrical method, and chloramphenicol was used as a model drug to investigate drug release profile of the hydrogels. The results showed that poly(2-hydroxyethylmethacrylateco-acrylamide) hydrogels were transparent and useful SCL biomaterial, the water content increased as AAm content increase and pH decrease, and in the same way, hydrogel composition affected chloramphenicol release process too. Migration rate of chloramphenicol increased as the AAm content in the hydrogels increased in the first stage of diffusion process, whereas there was no significant difference thereafter.  相似文献   

16.
Poly(N‐vinyl‐2‐pyrrolidone) and poly(N‐vinyl‐2‐pyrrolidone/acrylic acid) hydrogels were prepared by gamma irradiation for the removal of heavy metal ions (i.e., lead, copper, zinc, and cadmium) from aqueous solutions containing different amounts of these ions (2.5–10 mg/L) and at different pH values (1–13). The observed affinity order in adsorption of these metal ions on the hydrogels was Zn(II) > Pb(II) > Cu(II) > Cd(II) under competitive conditions. The optimal pH range for the heavy metal ions was from 7 to 9. The adsorption of the heavy metal ions decreased with increasing temperature in both water and synthetic seawater conditions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2013–2018, 2003  相似文献   

17.
A novel superabsorbent nanocomposite was synthesized through the intercalation polymerization of partially neutralized acrylic acid and a sodium‐type montmorillonite powder with N,N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate and sodium sulfite as a type of mixed redox initiator. The effects of such factors as the amounts of the sodium‐type montmorillonite, crosslinker, and initiator and neutralization degree on the water absorbency of the nanocomposite were investigated. The structure and micrographs of the superabsorbent were characterized with Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. The results showed that the acrylic acid monomer was successfully intercalated into the montmorillonite layers and banded together with them. The montmorillonite layers were exfoliated and basically dispersed in the composite on a nanoscale after the polymerization. The water absorbency of the nanocomposite was much higher than that of pure poly(acrylic acid). The optimum absorbency of the nanocomposite in distilled water and saline water (NaCl concentration = 0.9%) was 1201 and 83 g/g, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5725–5730, 2006  相似文献   

18.
Super adsorbent polyacrylamide (PAAm)/nanoclay (laponite, Lap) hydrogels were prepared by in situ free radical polymerization of AAm in an aqueous solution with clay as a crosslinker. The swelling properties and water‐soluble cationic dye adsorption behaviors of the PAAm/laponite (PAAm/Lap) nanocomposite (NC) hydrogels were investigated. The parameters of swelling and diffusion of water in dye solutions were evaluated for the PAAm/Lap NC hydrogels. The adsorption behavior of the monovalent cationic dyes such as Basic Blue 12 (BB 12), Basic Blue 9 (BB 9), and Basic Violet 1 (BV 1), were studied on the NC hydrogels. The effects of the clay content of the hydrogel on its cationic dye uptake behavior were studied. The adsorption studies indicated that the rates of dye uptake by the NC hydrogels increased in the following order: BB 9 > BB 12 > BV 1. This order is similar to the swelling results of the PAAm/Lap NC hydrogel in the dye solutions. The equilibrium uptakes of the different dyes by the PAAm/Lap NC hydrogel were nearly the same. In the dye absorption studies, S‐type adsorption in the Giles classification system was found for the BB 12 and BV 1 dyes, whereas L ‐type was observed for the BB 9 dye. After the heat treatment of PAAm/Lap, the rate of dye uptake and equilibrium dye uptake were increased. The NC hydrogels may be considered as a good candidate for environmental applications to retain more water and to remove dyes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
This study investigates the improved swelling behavior of chitosan/poly(acrylic acid) complex by solvent (methanol, ethanol, and acetone) extraction. The complex is developed by photoinitiated free‐radical polymerization of acrylic acid in the presence of chitosan. The swelling ratio of the complexes depends on the cosolvency effect of poly(acrylic acid) to the extracted solvent, which in turn affects the polymer network structure and ionic states characterized by dynamic force microscopy (DFM), Raman, and FT‐IR spectroscopy. The DFM investigation displays the improved structural changes of the polymer network structure after solvent extraction and its relation to the improved swelling property of the chosen system in different environmental conditions (pH, solvent, and salt concentration) are discussed. A high swelling ratio of about 600 times its dry weight is observed in water as well as in low salt and solvent concentration after methanol extraction. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2930–2940, 2004  相似文献   

20.
The isothermal kinetic of the release of nicotine from a poly(acrylic acid) (PAA) hydrogel was investigated at temperature range from 26°C to 45°C. Specific shape parameters of the kinetic curves, the period of linearity and saturation time were determined. The change in the specific shape parameters of the kinetic curves with temperature and the kinetic parameters of release of nicotine Ea and ln A were determined. By applying the “model fitting” method it was established that the kinetic model of release of nicotine from the PAA hydrogel was [1 − (1 − α)1/3] = kMt. The limiting stage of the kinetics release of nicotine was found to be the contracting volume of the interaction interface. The distribution function of the activation energy was determined and the most probable values of activation energies of 25.5 kJ mol−1 and 35 kJ mol−1 were obtained. Energetically heterogeneity of the interaction interface was explained by the existence of the two different modes of bonding the nicotine molecules onto the hydrogel network by hydrogen bond and electrostatic forces. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号