首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel system for characterizing complex N-linked oligosaccharide mixtures that uses a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), capillary electrophoresis (CE), and high-performance liquid chromatography (HPLC) has been developed. In this study, oligosaccharides released from recombinant TNK-tPA (tissue plasminogen activator) were derivatized with 5-amino-2-naphthalenesulfonic acid (ANSA). The negative charge imparted by the ANSA label facilitated the analysis of the oligosaccharides by MALDI-TOF MS by allowing the observation of both neutral and sialylated oligosaccharides in a single negative ion mode spectrum. Labeling with ANSA was also determined to be advantageous in the characterization of oligosaccharides by both HPLC and CE. The ANSA label was demonstrated to provide superior resolution over the commonly used label 8-aminopyrene-1,3,6-trisulfonic acid (APTS) in both the CE and HPLC analysis of oligosaccharides. To date, no other labels that enable the analysis of complex oligosaccharide mixtures in a single mass spectral mode, while also enabling high-resolution chromatographic and electrophoretic separation of the oligosaccharides, have been reported. By integrating the structural information obtained by MALDI-TOF MS analysis with the ability of CE and HPLC to discriminate between structural isomers, the complete characterization of complex oligosaccharide mixtures is possible.  相似文献   

2.
Bruno Domon Dr. 《Proteomics》2009,9(6):1488-1491
Quantitative proteomics is a rapidly expanding field, in particular, the application to clinical biomarker studies for diagnosis or prognosis of diseases, and the systematic analysis of protein functions in biological systems. Isolation of a class of peptides or a subproteome enables reduction of sample complexity, which is essential to perform sensitive, quantitative analyses over a wider dynamic range of protein concentrations. Glycosylation is one of the most frequent PTMs, and glycans have unique chemical properties that can be leveraged to selectively enrich for a subset of peptides, and thus facilitate the downstream analysis. The isolation of glycopeptides and its benefits for mass spectrometric measurements is discussed.  相似文献   

3.
Biological activities of immunoglobulin G such as effector functions via Fc receptor interactions are influenced by Fc-linked N-glycans. Here we describe a fast, robust and sensitive nano-LC-ESI-MS method for detailed subclass specific analysis of IgG Fc N-glycosylation. A sheath-flow ESI sprayer was used as a sensitive zero dead volume plug-and-play interface for online MS coupling, generating a very constant spray and ionization over the entire LC gradient. The propionic acid containing sheath-liquid effectively suppressed TFA gas-phase ion-pairing, enabling the use of TFA containing mobile phases. The fixed position of the sheath-flow ESI sprayer, far away from the glass capillary inlet, reduced MS contamination as compared to conventional nano-ESI. The method was found to be suitable for fast and detailed subclass specific IgG Fc N-glycosylation profiling in human plasma. The obtained subclass specific IgG Fc N-glycosylation profiles were processed automatically using in house developed software tools. For each of the IgG subclasses the 8 major glycoforms showed an interday analytical variation below 5%. The method was used to profile the IgG Fc N-glycosylation of 26 women at several time points during pregnancy and after delivery, revealing pregnancy-associated changes in IgG galactosylation, sialylation and incidence of bisecting N-acetylglucosamine.  相似文献   

4.
We report a case study of characterization of a non-enzymatically glycated IgG1 using reducing capillary electrophoresis sodium dodecyl sulfate (CE–SDS) and mass spectrometry (MS). Glycation was found to occur nonspecifically at multiple sites in both the light and heavy chains. The glycated light and heavy chains result in wider peaks eluting late in the reducing CE–SDS profile; in particular, the glycated light chain behaved as a shoulder peak detected by either ultraviolet (UV) or laser-induced fluorescence (LIF) signals. The glycated species can be enriched by boronate affinity chromatography. Analyzing the enriched samples by reversed phase high-performance liquid chromatography in line with time-of-flight MS (RP–HPLC–TOF/MS) revealed adducts of +162 and +324 Da to both the light and heavy chains, suggesting the presence of multiple glycation sites. Tryptic peptide mapping and tandem mass sequencing were used to identify two glycation sites on each of the light and heavy chains.  相似文献   

5.
The stability of papain was studied in aqueous-organic mixtures by means of residual proteolytic activity along with various spectroscopic analyses (fluorescence and ATR-FTIR combined with isotopic exchange with D2O). The investigated systems contained 1 or 10% (v/v) of an aqueous buffered solution (pH 8.0) in acetonitrile (ACN), methanol (MeOH) or dimethyl formamide (DMF). The results evidenced that papain retained almost all its catalytic activity after 24 h of incubation in the presence of ACN, and a more compact conformation of the enzyme was detected. Papain suffered an important loss of enzymatic activity (ca. 80%) after 24 h incubation in MeOH although, no global conformational change and minor secondary structure rearrangements were detected. This observation suggests that somehow the active site region was altered. On the other hand, papain suffered a complete inactivation when exposed to those media containing DMF. Fluorescence analyses revealed that an irreversible conformational change took place after 24 h incubation, and a moderate increase in β-sheet and β-turn structures was the most relevant finding when secondary structure was analyzed. The evidences demonstrated that the organic solvents induce a more rigid and compact structure of papain regardless of the organic:buffer ratio investigated. In turn, these modifications affect the active catalytic site in the particular case of MeOH and DMF. These findings were in agreement with the thermo-stability of the enzyme performed after heating at 353 K in all the studied media, that is the presence of ACN did not substantially affect the secondary structure of papain. Nevertheless, the α-helix domain demonstrated to be less thermally stable than the β-sheet domain, turning into aggregated structures after heating, especially in the presence of MeOH and DMF.  相似文献   

6.
The results of the characterization of a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based method that was developed to establish the stoichiometry of CHX-A'-diethylenetriaminepentaacetic acid (DTPA) or benzyl-DTPA conjugated to a recombinant immunoglobulin G (IgG) are reported. This simple method does not require an accurate measurement of the sample protein concentration to accurately quantify the number of DTPA conjugated. It is also not necessary to thoroughly remove nonconjugated DTPA from the sample. The average number of moles of DTPA attached per mole of IgG was calculated from the difference in the observed masses of DTPA-IgG and nonconjugated IgG divided by the molecular weight of the DTPA derivative. As more DTPA is attached, the [M+H](+) peak of DTPA-IgG becomes broader and noisier. Also, the signal intensity in the mass spectrum decreases, apparently due to the increase in the heterogeneity in the number of DTPA attached to each molecule of IgG. The standard deviation of the measured mass and that of the stoichiometry of the DTPA attached per IgG increased as more DTPA was attached. The standard deviation, expressed as coefficient of variation for samples with 2 to 4 mol of DTPA attached per mole of IgG, was 8 to 9%.  相似文献   

7.
8.
Recombinant monoclonal antibodies undergo extensive posttranslational modifications. In this article, we characterize major modifications, separated by cation exchange chromatography, on an immunoglobulin G1 (IgG1) monoclonal antibody (mAb). We found that N-terminal cyclization of glutamine residues to pyroglutamate on the light and heavy chains are the major isoforms resolved during cation exchange chromatography. However, using CEX, we also separated and identified isoforms with unpaired cysteine residues in the VH domain of the molecule (Cys22-Cys96). Omalizumab, a therapeutic anti-IgE antibody, has unpaired cysteine residues in the VH domain between Cys22 and Cys96, and the Fab fragment, containing the unpaired cysteine residues, is reported to have reduced potency. Dynamic interchain disulfide rearrangement, with slow kinetics, was recently reported to take place in serum for an IgG2 molecule and resulted in predictable mature isoforms. Analytical evaluation of our mAb, after recovery from serum, revealed that the unpaired intrachain cysteine residues (Cys22-Cys96) reformed their disulfide bond. The significance of this study is that correct pairing occurred rapidly, and we speculate that thiol molecules such as cysteine, homocysteine, and glutathione in serum provide an environment, outside the endoplasmic reticulum, for correct linkage.  相似文献   

9.
Bendiak B  Fang TT 《Carbohydrate research》2010,345(16):2390-2400
Using mass spectrometry in the negative ion mode, m/z 221 ions are frequently observed as product ion substructures derived from reducing disaccharides having 2, 4, or 6 linkages. The ions have been shown to be glycosyl-glycolaldehydes. All 16 stereochemical variants of their pyranosides were prepared and evaluated by infrared photodissociation, in addition to HexNAc-glycolaldehyde variants (m/z 262) of 2-acetamido-2-deoxy-d-glucose and 2-acetamido-2-deoxy-d-galactose. The stereochemistry and anomeric configuration of these ions were differentiated in the gas phase using a Fourier transform ion cyclotron resonance spectrometer with infrared multiphoton dissociation at 10.6 μm. Results were compared to those obtained by collision-induced dissociation. In some cases, differentiation was far preferable using infrared photodissociation; in others, collision-induced dissociation was preferred. Using an instrument that interfaced a linear trap with a Fourier transform ion cyclotron resonance spectrometer, either dissociation technique could be used to optimally discriminate between isomers. With infrared photodissociation, spectral differences were highly statistically significant, even between pairs of isomers having spectra that appeared to be visually somewhat similar (<1 × 10−9, student’s t-test for key discriminatory ions). Comparisons among different instruments suggest that physical standards of the stereochemical variants of these ions will be required for their detailed structural assignments in unknowns, as some variation was observed among instruments, both using infrared photodissociation and collision-induced dissociation.  相似文献   

10.
The extracellular matrix (ECM) molecules play important roles in many biological and pathological processes. During tissue remodeling, the ECM molecules that are glycosylated are different from those of normal tissue owing to changes in the expression of many proteins that are responsible for glycan synthesis. Vitronectin (VN) is a major ECM molecule that recognizes integrin on hepatic stellate cells (HSCs). The present study attempted to elucidate how changes in VN glycans modulate the survival of HSCs, which play a critical role in liver regeneration. Plasma VN was purified from partially hepatectomized (PH) and sham-operated (SH) rats at 24 h after operation and non-operated (NO) rats. Adhesion of rat HSCs (rHSCs), together with phosphorylation of focal adhesion kinase, in PH-VN was decreased to one-half of that in NO- or SH-VN. Spreading of rHSCs on desialylated NO-VN was decreased to one-half of that of control VN, indicating the importance of sialylation of VN for activation of HSCs. Liquid chromatography/multiple-stage mass spectrometry analysis of Glu-C glycopeptides of each VN determined the site-specific glycosylation. In addition to the major biantennary complex-type N-glycans, hybrid-type N-glycans were site-specifically present at Asn167. Highly sialylated O-glycans were found to be present in the Thr110–Thr124 region. In PH-VN, the disialyl O-glycans and complex-type N-glycans were decreased while core-fucosylated N-glycans were increased. In addition, immunodetection after two-dimensional PAGE indicated the presence of hyper- and hyposialylated molecules in each VN and showed that hypersialylation was markedly attenuated in PH-VN. This study proposes that the alteration of VN glycosylation modulates the substrate adhesion to rat HSCs, which is responsible for matrix restructuring.  相似文献   

11.
Mature seeds of lentil (Lens culinaris Medik.) were previously reported to contain an insecticidal cysteine-rich peptide, likely of the albumin-1 subunit b type. The purpose of this work was to determine the amino acid sequence of this insecticidal lentil peptide in an Eston lentil extract by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), after reduction of the disulfide bridges, alkylation of the cysteine residues and hydrolysis by pronase, trypsin, chymotrypsin and endoproteinase Asp-N. Sequences of key fragments were supported by monoisotopic mass measurements and by sequence ions from collision-induced dissociation (CID) experiments with a MALDI-TOF/TOF analyzer (MS/MS analysis). The new 37 amino acid sequence revealed strong similarities to a histidine-containing pea PA1b peptide and to soybean leginsulins but with a unique segment of RSSA in the middle. The lentil PA1b peptide sequence agreed completely with that derived from a L. culinaris genomic DNA sequence.  相似文献   

12.
Taha TA  El-Alwani M  Hannun YA  Obeid LM 《FEBS letters》2006,580(26):6047-6054
Previous work has identified sphingosine kinase-1 (SK1) as a substrate for the cysteine protease cathepsin B in vitro. In this study, the mechanism of SK1 cleavage by cathepsin B was investigated. We identified two initial cleavage sites for the protease, the first at histidine 122 and the second at arginine 199. Mutation analysis showed that replacement of histidine 122 with a tyrosine maintained the activity of SK1 while significantly reducing cleavage by cathepsin B at the initial cleavage site. The efficacy of cleavage of SK1 at arginine 199, however, was not affected. These studies demonstrate that SK1 is cleaved by cathepsin B in a sequential manner after basic amino acids, and that the initial cleavages at the two identified sites occur independently of each other.  相似文献   

13.
Cetuximab is a novel therapeutic monoclonal antibody with two N-glycosylation sites: a conserved site in the CH2 domain and a second site within the framework 3 of the variable portion of the heavy chain. The detailed structures of these oligosaccharides were successfully characterized using orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight mass spectrometry (oMALDI Qq-TOF MS) and tandem mass spectrometry (MS/MS) in combination with exoglycosidase digestion. The N-linked oligosaccharides were released by treatment with N-glycanase F, reductively aminated with anthranilic acid, and fractionated by normal phase high-performance liquid chromatography (NP-HPLC). The fluorescent-labeled oligosaccharide pool and fractions were analyzed by oMALDI Qq-TOF MS and MS/MS in negative ion mode. Each fraction was further digested with an array of exoglycosidase mixtures, and subsequent MALDI TOF MS analysis of the resulting products yielded information about structural features of the oligosaccharide. The combined data revealed the presence of 21 distinct oligosaccharide structures in cetuximab. These oligosaccharides differ mainly in degree of sialylation with N-glycolyl neuraminic acid and extent of galactosylation (zero-, mono-, di-, and alpha(1-3)-galactosidase). The individual oligosaccharides were further assigned to the specific sites in the Fab and Fc regions of the antibody. This study represents a unique approach in that MS/MS data were used to identify and confirm the oligosaccharide structures of a protein.  相似文献   

14.
Proteolytic processing is an important regulatory mechanism for chemokines. Matrix metalloproteinases (MMPs), such as gelatinase A/MMP-2 and gelatinase B/MMP-9, are known to process the aminoterminal end of various chemokines, including interleukin-8 (IL-8/CXCL-8) and monocyte chemotactic protein-3 (MCP-3/CXCL-7). In the present study, two proteases, gelatinase B and neutrophil collagenase/MMP-8, are shown for the first time to process the carboxyterminal end of two chemokines, monokine induced by interferon (IFN)-gamma (MIG/CXCL-9) and IFN-inducible protein-10 (IP-10/CXCL-10). Neutrophil collagenase degrades MIG into small fragments and cleaves IP-10 behind positions 71 and 73. Gelatinase B degrades IP-10 and cleaves MIG at three different sites in its extended carboxyterminal region. This results in the formation of MIG(1-94), MIG(1-93), and MIG(1-90). In general, gelatinase B was more efficient than neutrophil collagenase in processing these chemokines. Alignment of the CXC chemokines with the respective cleavage sites by both MMPs identified the ELR motif as a possible determinant for amino terminal cleavage by these MMPs.  相似文献   

15.
Plasmodium falciparum glideosome-associated protein 45 (PfGAP45) was in vitro phosphorylated by P. falciparum calcium-dependent protein kinase (PfCDPK1) and digested using the four proteases trypsin, chymotrypsin, AspN, and elastase. Subsequently, phosphopeptide enrichment using Ga(III) immobilized metal affinity chromatography (IMAC) was performed. The resulting fractions were analyzed using ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), resulting in the identification of a total of nine phosphorylation sites: Ser31, Ser89, Ser103, Ser109, Ser121, Ser149, Ser156, Thr158, and Ser173. During in-depth analyses of the detected phosphopeptides, it was observed that phosphorylation alters the properties of PfGAP45 as kinase and protease substrate. The closely adjacent phosphorylation sites Ser156 (major site) and Thr158 (minor site) were analyzed in detail because at first glance the specific proteases gave highly variable results with respect to the relative abundance of these sites. It was observed that (i) formation of pSer156 and pThr158 was mutually exclusive and (ii) phosphorylation at Ser156 or Thr158 interfered specifically with proteolysis by chymotrypsin or trypsin, respectively. The latter effect was studied in detail using synthetic phosphopeptides carrying either pSer156 or pThr158 as substrate for chymotrypsin or trypsin, respectively.  相似文献   

16.
17.
Hyaluronan (HA) has different biological functions according to its molar mass; short HA fragments are involved in inflammation processes and angiogenesis, whereas native HA is not. Physicochemically, studies of native HA hydrolysis catalyzed by bovine testicular hyaluronidase (HAase) have suggested that kinetic parameters depend on HA chain length. To study the influence of HA chain length in more detail, and to try to correlate the physicochemical and biological properties of HA, HA hydrolysis catalyzed by HAase was used in a new procedure to obtain HA fragments of different molar masses. HA fragments (10-mg scale) with a molar mass from 800 to 300,000 g mol(-1) were prepared, purified using low-pressure size exclusion chromatography (SEC), lyophilized, and characterized in molar mass by either mass spectrometry or HPLC-SEC-multiangle laser light scattering. The polydispersity index of the purified fractions was less than 1.25. The complete set of HA standards obtained was used to calibrate our routine HPLC-SEC device using only a refractive index (RI) detector. We showed that the N-acetyl-d-glucosamine reducing end assay and the calibrated HPLC-SEC-RI gave equivalent kinetic data. In addition, the HPLC-SEC-RI furnished the mass distribution of the polysaccharide during its hydrolysis.  相似文献   

18.
《MABS-AUSTIN》2013,5(6):558-567
The mammalian antibody repertoire comprises immunoglobulin (Ig) molecules of multiple isotypes and subclasses with varying functional properties. Among the four subclasses of the human IgG isotype, we found that IgG2 exhibits a particular resistance to human and bacterial proteases that readily cleave the IgG1 hinge region in vitro. Autoantibodies (IgGs) that recognize points of proteolytic cleavage in the IgG1 hinge are widespread in the healthy human population, suggesting that IgG1 fragmentation and the generation of cryptic antigens for host immune surveillance commonly occur in vivo. We previously reported that autoantibodies to cleaved IgG1s can restore Fc-mediated effector functions that are lost following proteolytic cleavage of the hinge. In contrast, it was not possible to demonstrate an analogous cohort of autoantibodies to IgG2 hinge epitope analogs, and there appeared to be no functional component in human serum with the ability to reconstitute Fc effector functions to a cell-bound IgG2 fragment. Thus, the results indicate that among the IgG subclasses, human IgG2 is uniquely resistant to a number of known pathological proteases and that autoimmune recognition to potential cleavage points in the IgG2 hinge appears to be absent in human circulation.  相似文献   

19.
The mammalian antibody repertoire comprises immunoglobulin (Ig) molecules of multiple isotypes and subclasses with varying functional properties. Among the four subclasses of the human IgG isotype, we found that IgG2 exhibits a particular resistance to human and bacterial proteases that readily cleave the IgG1 hinge region in vitro. Autoantibodies (IgGs) that recognize points of proteolytic cleavage in the IgG1 hinge are widespread in the healthy human population, suggesting that IgG1 fragmentation and the generation of cryptic antigens for host immune surveillance commonly occur in vivo. We previously reported that autoantibodies to cleaved IgG1s can restore Fc-mediated effector functions that are lost following proteolytic cleavage of the hinge. In contrast, it was not possible to demonstrate an analogous cohort of autoantibodies to IgG2 hinge epitope analogs and there appeared to be no functional component in human serum with the ability to reconstitute Fc effector functions to a cell-bound IgG2 fragment. Thus, the results indicate that among the IgG subclasses, human IgG2 is uniquely resistant to a number of known pathological proteases and that autoimmune recognition to potential cleavage points in the IgG2 hinge appears to be absent in human circulation.Key words: antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, autoantibodies  相似文献   

20.
Protein disulfide isomerase (PDI, EC 5.3.4.1), an enzyme and chaperone, catalyses disulfide bond formation and rearrangements in protein folding. It is also a subunit in two proteins, the enzyme collagen prolyl 4-hydroxylase and the microsomal triglyceride transfer protein. It consists of two catalytically active domains, a and a', and two inactive ones, b and b', all four domains having the thioredoxin fold. Domain b' contains the primary peptide binding site, but a' is also critical for several of the major PDI functions. Mass spectrometry was used here to follow the folding pathway of bovine pancreatic ribonuclease A (RNase A) in the presence of three PDI mutants, F449R, Delta455-457, and abb', and the individual domains a and a'. The first two mutants contained alterations in the last alpha helix of domain a', while the third lacked the entire domain a'. All mutants produced genuine, correctly folded RNase A, but the appearance rate of 50% of the product, as compared to wild-type PDI, was reduced 2.5-fold in the case of PDI Delta455-457, 7.5-fold to eightfold in the cases of PDI F449R and PDI abb', and over 15-fold in the cases of the individual domains a and a'. In addition, PDI F449R and PDI abb' affected the distribution of folding intermediates. Domains a and a' catalyzed the early steps in the folding but no disulfide rearrangements, and therefore the rate observed in the presence of these individual domains was similar to that of the spontaneous process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号