首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Workpiece out-of-roundness is one of the most important problems in centerless grinding. Besides geometrical and kinematical effects, the dynamical behavior of the machine structure, the grinding and regulating wheel together with the support blade fundamentally influence the process stability and the workpiece accuracy. The paper presents a method for a numerical simulation of plunge centerless grinding processes in time domain. Under consideration of the geometrical conditions of the grinding gap and the dynamical compliance behavior of the grinding system the developed algorithm enables a quantitative determination of the workpiece out-of-roundness, the progression of grinding and reaction forces as well as the calculation of dynamical displacements.  相似文献   

2.
This paper introduces new algorithms for analysis and optimization of infeed centerless grinding, based on high-level integration of grinding models into a web-based simulation. This holistic approach to simulation facilitates system-level simulation and solvers for several interlinked problems associated with the process mechanics. Emphasis is on structuring the model-based simulation as well as adapting and incorporating the underlying models into the algorithms. Geometric lobing-, chatter- and spinning-related process stability, as well as a time domain continuity equation, are integrated into the simulation to analyze the main quality-related limitations of the process. Once the process stability is assured for the process set-up, optimization strategies and a new infeed cycle definition function are proposed to achieve a minimal or target cycle time. An example of experimental optimization is provided to compare a high-quality process with a target cycle time to an optimized high-productivity process – demonstrating a 70% reduction in cycle time.  相似文献   

3.
Multiple diameter part applications cope a relevant percentage of infeed centerless grinding operations. Nevertheless, general stability analysis and process optimisation has been mainly investigated for mono-diameter parts. This paper presents a time domain simulation software developed for multiple diameter parts that allows the simulation of average and particular evolution of process forces, power, machine deflections, thermal behaviour, real part diameter and roughness. First, a work rotation stability analysis is carried out. Then, with the use of both the stability analysis and the infeed cycle simulation, optimized process parameters and cycles are defined in order to increase process productivity.  相似文献   

4.
The continuous rotation speed variation is demonstrated to be an efficient method to avoid regenerative chatter in different machining processes. This paper presents a time-domain dynamic model for throughfeed centerless grinding process that can predict chatter by means of part roundness error evolution. Continuous workpiece speed variation (CWSV) has been implemented in this model to analyze the influence of this disturbing method on the dynamic instability. Experimental results have validated the model and verified the effectiveness of CWSV for chatter avoidance and surface finish and dimensional tolerances improvement. It has been demonstrated that the selection of the optimal variation parameters is an important factor not only for chatter avoidance, but also for the stability of surface finish and dimensional tolerances since workpiece speed variation has a direct influence on throughfeed rate and grinding forces.  相似文献   

5.
This paper investigates grinding force and grinding temperature of ultra-high strength steel Aermet 100 in conventional surface grinding using a single alumina wheel, a white alumina wheel and a cubic boron nitride wheel. First, mathematical models of grinding force and grinding temperature for three wheels were established. Then, the role of chip formation force and friction force in grinding force was investigated and thermal distribution in contact zone between workpiece and wheel was analyzed based on the mathematical model. The experimental result indicated that the minimum grinding force and the maximum grinding force ratio under the same grinding parameters can be achieved when using a CBN wheel and a single alumina wheel, respectively. When the phenomenon of large grinding force and high grinding temperature appeared, the workpiece material would adhere locally to the single alumina wheel. Grinding temperature was in a high state under the effect of two main aspects: poor thermal properties of grinding wheel and low coolant efficiency. The predicted value of grinding force and grinding temperature were compared with those experimentally obtained and the results show a reasonable agreement.  相似文献   

6.
Centerless grinding has been extensively used in production engineering to produce accurate cylindrical parts together with high productivities. On the other hand, regenerative chatter vibrations are one of the major problems that limit the ability to produce round workpieces. This constraint can be solved selecting proper machine setup conditions, which still largely relies on a trial and error method, and sometimes this approach is not optimum in a productivity sense. This paper shows a novel method to reduce chatter vibrations in a centerless grinding machine using actively controlled piezoelectric actuators. A simplified model of the machine is used to simulate the behavior of several commercially available piezoelectric actuators in two different locations of the machine. Based on these simulations, a selection of proper actuators and their optimal location is obtained and the control system is implemented experimentally. Experimental results show that the control strategy provides a stabilizing effect on chatter. Thus, the viability of using piezoelectric actuators as active components is demonstrated, providing an important advance in the knowledge of chatter control in centerless grinding machines.  相似文献   

7.
E. Ahearne  G. Byrne 《CIRP Annals》2008,57(1):333-336
The rotational grinding process enables production of substrates for the semiconductor industry by a singular capacity to meet planarity and total thickness variation (TTV) requirements. However, the simple configuration is characterised by varying local kinematics. An upper-bound simulation of the meso-scale engagement kinematics has been developed with analysis algorithms that provide estimates of local kinematical parameters. These have been correlated with local measurements for typical brittle-mode microgrinding parameters including measurements of the local normal force. The results generally correlated for surface roughness but not for local normal force where ‘equilibration’ was attributed to system local and bending stiffness components.  相似文献   

8.
55钢CBN砂轮平面磨削的磨削力模型研究   总被引:2,自引:0,他引:2  
本文建立了基于未变形磨屑厚度的磨削力计算模型。根据55号钢的CBN砂轮平面磨削实验,首先采用随机方向搜索法对切向力模型进行优化拟合,再根据拟合的参数对法向力模型进行优化,得出了CBN砂轮与工件之间的摩擦系数和磨粒顶锥角。分析了摩擦力在磨削力中所占比重的影响因素,结果表明:当切深不变时,随着vs/vw比值的增加,磨削力以及摩擦力在磨削力中所占的比重均下降,但当磨粒间距增加时,磨削力减小,而摩擦力在磨削力中所占比重增加。  相似文献   

9.
采取顺磨和逆磨两种磨削方式,采用电镀金刚石砂轮对火成岩质水晶进行了平面磨削实验。通过测量磨削过程中的水平磨削力和垂直磨削力,得出了磨削深度、进给速度对磨削力的影响规律。结果表明,随着磨削深度的增大磨削力增大,随着进给速度的增大磨削力也增大。同时分析并讨论了火成岩质水晶的磨削力比,磨削力比Ft/Fn为0.33~0.36。  相似文献   

10.
This paper presents a fundamental investigation of the system matching mechanisms involved in ultrasonic vibration assisted grinding (UAG) of titanium processing. The effects of system matching on grinding force and surface roughness are studied experimentally. The design of experiments and experimental equipment are described in detail. In this investigation, a five-variable four-level fractional factorial design is used to conduct experiments. The experiments are employed to reveal the main effects as well as the interaction effects of the ultrasonic parameters on the process outputs such as material removal rate (MRR), grinding force, surface topography and surface roughness. Experimental results showing that the application of system matching in UAG can improve the work piece grinding quality.  相似文献   

11.
ELID-lap grinding is a method of constant pressure grinding which utilizes an electrically conductive wheel and the electrolytic in-process dressing (ELID) method. This method has the advantage of using micro grain-wheels above #10 000 and also, through simple modification, can be used on existing lap machines. To find the characteristics of metal-resin bonded wheels developed for ELID-lap grinding, experiments on the grinding of brittle materials were performed using wheels with a variety of grain diameters. The wheels used in the experiments were #8000, #120 000 and #3 000 000 metal-resin bonded diamond wheels (#8000 MRB-D, #120 000 MRB-D and #3 000 000 MRB-D wheels). The workpieces were silicon and glass. The results of the experiments showed that stable grinding can be achieved with the #8000 to #3 000 000 MRB-D wheels. With the #3 000 000 MRB-D wheel, very smooth surface finishes were obtained for both silicon (PV 2.8 nm) and glass (PV 2.5 nm). Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) observations indicated these surfaces to be very smooth in the order of several nanometers, obtained by mechanical removal using an ultrafine wheel.  相似文献   

12.
复合控制在提高被动式力伺服系统频宽上的应用   总被引:1,自引:0,他引:1  
本文介绍一种利用局部反馈和前馈复合控制方案,把开环控制的快速特点与闭环控制精度较高的特点相结合,在保证控制精度的前提下使系统频宽得到了很大提高,同时介绍了消除多余力的补偿方法。  相似文献   

13.
The work reported here involved an investigation into the grinding process, one of the last finishing processes carried out on a production line. Although several input parameters are involved in this process, attention today focuses strongly on the form and amount of cutting fluid employed, since these substances may be seriously pernicious to human health and to the environment, and involve high purchasing and maintenance costs when utilized and stored incorrectly. The type and amount of cutting fluid used directly affect some of the main output variables of the grinding process which are analyzed here, such as tangential cutting force, specific grinding energy, acoustic emission, diametrical wear, roughness, residual stress and scanning electron microscopy. To analyze the influence of these variables, an optimised fluid application methodology was developed (involving rounded 5, 4 and 3 mm diameter nozzles and high fluid application pressures) to reduce the amount of fluid used in the grinding process and improve its performance in comparison with the conventional fluid application method (of diffuser nozzles and lower fluid application pressure). To this end, two types of cutting fluid (a 5% synthetic emulsion and neat oil) and two abrasive tools (an aluminium oxide and a superabrasive CBN grinding wheel) were used. The results revealed that, in every situation, the optimised application of cutting fluid significantly improved the efficiency of the process, particularly the combined use of neat oil and CBN grinding wheel.  相似文献   

14.
A mixture of Ni-Cr-P, Cu and B powder was used as a dilute for modifying the microstructure of the reacted product and easing the fast propagating rate and the high temperature in the self-propagating high-temperature synthesis (SHS) of Ni-Al matrix grinding tool material. The SHS process of the Ni-Al/diamond/dilute was examined and the microstructure of the reacted product was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The grinding performance of the tool was tested in the grinding of a synthetic single crystal of sapphire. The results showed that the dilute substantially reduced the propagating rate and the combustion temperature of Ni-Al SHS. Besides the dominating intermetallics NiAl and NiAl3, Ni4Al3 was also identified in the reacted Ni-Al/diamond/dilute composite owing to the Ni rich environment. In the reacted composite there was a Cr-rich zone at the boundary of the diamond grit due to the formation of Cr3C2 between Cr and the diamond. In the grinding a lower wear rate and a better retention ability of diamond grits could be achieved for the grinding tool material that contained finer diamond grits.  相似文献   

15.
The aim of this study was to analyze effectively the grinding power spent during the process and the surface roughness of the ground workpiece in the external cylindrical grinding of hardened SCM440 steel using the response surface method. A Hall effect sensor was used for measuring the grinding power of the spindle driving motor. The surface roughness was also measured and evaluated according to the change of the grinding conditions. Response surface models were developed to predict the grinding power and the surface roughness using the experimental results. From adding simply material removal rate to the contour plot of these mathematical models, it was seen that useful grinding conditions for industrial application could be easily determined.  相似文献   

16.
It has been found that using a segmented grinding wheel with a fluid chamber can significantly minimise the quantity of coolant while improving the ground surface integrity. The present investigation aims to explore the fluid flow mechanism in such a wheel system. To this end, the Weber theory for Newtonian jet instability was applied to quantitatively determine the contribution of coolant flow rate to mist and ligament modes. A semi-analytical model was then developed to predict the mist flow rate by taking into account both the grinding parameters and fluid properties. It was shown that the model prediction was in good agreement with experimental measurements. Because of the comprehensive integration of variables in the formulation, the model provides a good fundamental understanding of the mist formation and offers a practical guideline for the selection and use coolant in minimising the mist flow rate.  相似文献   

17.
本文用树脂结合剂金刚石砂轮对钒酸钇晶体进行了平面磨削实验,研究了砂轮线速度、工件进给速度和磨削深度对磨削力和磨削表面粗糙度的影响。结果表明:磨削力和磨削表面粗糙度都是随着砂轮线速度的增加而减小,随进给速度和磨削深度的增加而增加,其中磨削深度对磨削力影响最大,砂轮线速度对磨削表面粗糙度影响最大。钒酸钇晶体的磨削表面主要由断裂区域和光滑区域组成,当砂轮线速度为30m/s时,磨削表面存在宽度约100μm的裂痕,而随着砂轮线速度的上升,裂痕宽度降低到50μm以下,同时光滑区域所占的比例增加,这可能与发生塑性变形的机率增大有关。  相似文献   

18.
Industrial robots are recently introduced to the belt grinding of free-form surfaces to obtain high productive efficiency and constant surface quality. The simulation of belt grinding process can facilitate planning grinding paths and writing robotic programs before manufacturing. In simulation, it is crucial to get the force distribution in the contact area between the workpiece and the elastic contact wheel because the uneven distributed local forces are the main reason to the unequal local removals on the grated surface. The traditional way is to simplify this contact problem as a Signorini contact problem and use the finite element method (FEM) to calculate the force distribution. However, the FEM model is too computationally expensive to meet the real-time requirement. A new model based on support vector regression (SVR) technique is developed in this paper to calculate the force distribution instead of the FEM model. The new model approximates the FEM model with an error smaller than 5%, but executes much faster (1 s vs 15 min by FEM). With this new model, the real-time simulation and even the on-line robot control of grinding processes can be further conducted.  相似文献   

19.
A nanofluid minimum quantity lubrication with addition of one kind of nanoparticle has several limitations, such as grinding of difficult-to-cutting materials. Hybrid nanoparticles integrate the properties of two or more kinds of nanoparticles, thus having better lubrication and heat transfer performances than single nanoparticle additives. However, the use of hybrid nanoparticles in nanofluid minimum quantity lubrication grinding has not been reported. This study aims to determine whether hybrid nanoparticles have better lubrication performance than pure nanoparticle. A hybrid nanofluid consisting of MoS2 nanoparticles with good lubrication effect and CNTs with high heat conductivity coefficient is investigated. The effects of the hybrid nanofluid on grinding force, coefficient of friction, and workpiece surface quality for Ni-based alloy grinding are analyzed. Results show that the MoS2/CNT hybrid nanoparticles achieve better lubrication effect than single nanoparticles. The optimal MoS2/CNT mixing ratio and nanofluid concentration are 2:1 and 6 wt%, respectively.  相似文献   

20.
Mechanisms in the generation of grinding wheel topography by dressing   总被引:2,自引:1,他引:1  
For the process of dressing vitrified bonded grinding wheels with diamond tools it has been unknown how the wheel topography is generated. Moreover, the influence of the kinematical dressing parameters on the wheel wear behavior has not been quantified. In the course of this article the grinding wheel was dealt with as a porous ceramic composite. In FEM simulations common dressing forces and usual dressing tool geometries were applied. The results were verified by dressing tests and grinding wheel scratch tests which show the wheel wear mechanisms. The common practice of decreasing the grinding wheel surface roughness by a finishing dressing stroke has to be reconsidered, because previous dressing strokes with higher depths of cut can weaken the grinding wheel structure and lead to an unsteady phase with high grinding wheel wear after dressing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号