首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ring-opening surface initiated polymerization of l-proline N-carboxyanhydride was performed from amine functionalized single (SWNTs) and multi walled carbon nanotubes (MWNTs). The primary amines were grafted on the surfaces via a well-studied Diels–Alder cycloaddition. The initiator attachment helped the debundling of carbon nanotubes as shown by atomic force microscopy (AFM) studies where only small aggregates were observed. Thermogravimetric analysis revealed high wt% of grafted polyproline on the carbon nanotubes surface after the ring-opening polymerization. AFM studies showed a rather uniform layer of grafted polyproline from both MWNTs and SWNTs. The grafting of PLP on the surface was also verified by FTIR and Raman spectroscopy as well as 1H NMR in CDCl3/d-TFA. The polyproline grafted carbon nanotubes (CNTs) were readily dissolved in organic solvents in contrast to the insoluble pristine and amine-functionalized CNTs.  相似文献   

2.
碳纳米管在接枝二元胺过程中微结构的变化   总被引:4,自引:0,他引:4  
通过对酸化的多壁碳纳米管(MWNTs)进行酰氯化, 在碳纳米管表面接枝己二胺. 用红外光谱、热重分析、拉曼光谱和场发射扫描电镜对处理前后的碳纳米管进行分析表征. 结果表明, 经过酰氯活化, 己二胺比较容易被接枝到碳纳米管上. 而且还发现碳纳米管在酸化后形成紧密块状结构, 在接枝胺后重新变得蓬松, 其表观比容甚至大于原始碳纳米管. 从理论上分析了碳纳米管的反应过程, 对碳纳米管在接枝胺过程中微结构的变化机理进行推测, 认为通过接枝, 己二胺插入碳纳米管之间, 改变了碳纳米管之间的相互作用, 使得酸化后因形成氢键而导致的紧密堆砌结构被破坏.  相似文献   

3.
An in situ polycondensation approach was applied to functionalize multiwalled carbon nanotubes (MWNTs), resulting in various linear or hyperbranched polycondensed polymers [e.g., polyureas, polyurethanes, and poly(urea-urethane)-bonded carbon nanotubes]. The quantity of the grafted polymer can be easily controlled by the feed ratio of monomers. As a typical example, the polyurea-functionalized MWNTs were measured and characterized in detail. The oxidized MWNTs (MWNT-COOH) were converted into acyl chloride-functionalized MWNTs (MWNT-COCl) by reaction with neat thionyl chloride (SOCl2). MWNT-COCl was reacted with excess 1,6-diaminohexane, affording amino-functionalized MWNTs (MWNT-NH2). In the presence of MWNT-NH2, the polyurea was covalently coated onto the surfaces of the nanotube by in situ polycondensation of diisocyanate [e.g., 4,4'-methylenebis(phenylisocyanate)] and 1,6-diaminohexane, followed by the removal of free polymer via repeated filtering and solvent washing. The coated polyurea content can be controlled to some extent by adjusting the feed ratio of the isocyanato and amino groups. The structure and morphology of the resulting nanocomposites were characterized by FTIR, NMR, Raman, confocal Raman, TEM, EDS, and SEM measurements. The polyurea-coated MWNTs showed interesting self-assembled flat- or flowerlike morphologies in the solid state. The signals corresponding to that of the D and G bands of the carbon nanotubes were strongly attenuated after polyurea was chemically tethered to the MWNT surfaces. Comparative experiments showed that the grafted polymer species and structures have a strong effect on the Raman signals of polymer-functionalized MWNTs.  相似文献   

4.
Multi‐walled carbon nanotubes (MWNTs) were functionalized with a silane coupling agent. The MWNTs were first coated with inorganic silica by a sol‐gel process and then grafted with 3‐methacryloxypropyltrimethoxysilane (3‐MPTS). The effect of raw MWNTs and silane‐functionalized MWNTs on the crystallization behavior of poly(propylene) (PP) was investigated by means of polarized optical microscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Results obtained from isothermal crystallization experiments indicate that 3‐MPTS functionalization affects the crystallization and melting behavior of PP/MWNTs composites remarkably, which can be attributed to the fact that 3‐MPTS functionalization of MWNTs leads to a uniform dispersion of MWNTs in PP matrix resulting in the good nucleating effect of MWNTs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1616–1624, 2007  相似文献   

5.
A significant and versatile approach was developed for perpendicularly aligning multiwall carbon nanotubes on diverse substrates suitable for layer-by-layer self-assembly. The multiwall carbon nanotubes (s-MWNTs) used were shortened with oxidation under ultrasonic and functionalized with acyl chloride in thionyl chloride (SOCl2). The monolayer of s-MWNTs perpendicularly grafted to the substrate was obtained by dipping the polyelectrolyte modifying substrate into a tetrahydrofuran suspension of the functionalized s-MWNTs. The interaction proved to be stable and not liable to be affected by the ambience. Transmission electron microscopy and atomic force microscopy were used to examine the morphology of the MWNTs and s-MWNTs grafted on the substrates. Raman spectroscopy was applied to verify the existence of s-MWNTs for assembly, and Fourier transform infrared absorption spectra were used to investigate the interaction pattern between s-MWNTs and polyelectrolyte. The electrochemistry properties of the monolayer of s-MWNTs when the substrate was indium-tin oxide were studied.  相似文献   

6.
聚氨酯接枝多壁碳纳米管的制备及表征   总被引:3,自引:0,他引:3  
采用两步法成功地将聚氨酯分子链以共价键连接到碳纳米管表面. 首先将聚丙烯酰氯通过与强酸氧化后多壁碳纳米管表面产生的羟基及少量羧基之间的化学反应共价接枝到碳纳米管表面; 然后将接枝到碳纳米管表面的聚丙烯酰氯与端羟基聚氨酯发生酯化反应, 实现了聚氨酯对碳纳米管的表面共价接枝. 采用傅里叶变换红外光谱(FTIR)、透射电镜(TEM)、扫描电镜(SEM) 和热重分析(TGA)等对接枝后的产物进行了表征, 结果表明, 聚氨酯已共价接枝到碳纳米管表面, 被接枝的聚合物的含量接近90%.  相似文献   

7.
Multiwalled carbon nanotubes (MWNT) were functionalized with poly(L-lactic acid) (PLLA) with different molecular weights using a "grafting to" technique. The oxidized MWNT (MWNT-COOH) were converted to the acyl-chloride-functionalized MWNT (MWNT-COCl) by treating them with thionyl chloride (SOCl2) and reacting them with PLLA to prepare the MWNT-g-PLLA. FTIR and Raman spectroscopy revealed that the PLLA was covalently attached to the MWNT, and the weight gain due to the functionalization was determined by thermogravimetric analyses (TGA). The Raman signals of the MWNT were greatly weakened as a result of the PLLA grafting. The morphology of the grafted PLLA was examined by using SEM and TEM. The amount of grafted PLLA depended on the molecular weight of the PLLA. The PLLA coated on the MWNT became thicker and more uniform with increasing PLLA molecular weight from 1000 to 3000. However, the amount of grafted PLLA became lower when the molecular weight of PLLA was further increased to 11,000 and 15,000, and the PLLA attached to the MWNT showed a squid leglike morphology forming blobs and leaving much of the MWNT surface bare.  相似文献   

8.
We report a simple method for the functionalization of multi-walled carbon nanotubes (MWNTs) with a biomedically important polymer, poly(2-hydroxyethyl methacrylate) (poly(HEMA)), by chemical grafting of HEMA monomer followed by free radical polymerization. The nanotubes were first oxidized with a mixture of conc. nitric acid and sulfuric acid (1:3), in order to obtain carboxylic acid functionalized MWNTs. Then the grafting of HEMA on to the surface of MWNTs was carried by chemical functionalization of HEMA with acid chloride-bound nanotubes by esterification reaction. FT-IR was used to identify functionalization of -COOH and HEMA groups attached to the surface of the nanotubes. The presence of poly(HEMA) on the nanotubes were confirmed by FESEM, TEM, and TGA analyses. Additionally, the dispersibility of the polymer functionalized nanotubes in methanol was also demonstrated. Considering the biomedical importance of poly(HEMA) and the recent successful in vivo studies on CNTs, in future, these materials are expected to be useful in the pharmaceutical industry as novel biomaterials composites with potential applications in drug delivery.  相似文献   

9.
Multiwalled carbon nanotubes (MWNTs) were effectively functionalized with KMnO4 in the presence of a phase‐transfer catalyst at room temperature. The hydroxyl functionalized MWNTs were reacted with a vinyl‐group carrying silane‐coupling agent and the terminal vinyl groups were used to fabricate polystyrene (PS) brushes by solution polymerization. Finally, PS‐encapsulated MWNTs were obtained. The synthesis results were verified from FT‐Raman, thermal gravimetric analysis, energy dispersive X‐ray analysis, and transmission electron microscope. PS‐encapsulated MWNTs had much improved dispersion stability in hydrophobic medium, toluene since grafted hydrophobic PS interacts with media and has improved compatibility. This functionalization technique would provide a facile route to prepare various polymer brushes on the surface of MWNTs to improve the dispersion of MWNTs for potential applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4413–4420, 2007  相似文献   

10.
Poly(ethylene terephthalate) (PET) nanocomposites were prepared by melt‐extruding mixtures of PET and functionalized multiwalled carbon nanotubes (MWNTs) with some interaction with PET molecules. For the functionalization of MWNTs, benzyl isocyanate and phenyl isocyanate with different molecular flexibility were employed on the surface of the MWNTs via chemical modification, respectively. The reaction for functionalization of MWNTs was confirmed by FTIR and transmission electron microscopy (TEM) measurements. TEM observations indicated that both benzyl and phenyl isocyanate groups covered the surface of the MWNTs after functionalization. The PET nanocomposites containing isocyanate groups showed improved mechanical properties, including the tensile strength and tensile modulus, compared with those with pristine and acid‐treated nanotubes. These improvements were ascribed to π–π interactions between the aromatic rings of PET molecules and the isocyanate group in MWNTs. The functionalized MWNTs showed a better dispersion of carbon nanotubes in the matrix polymer and a different fractured cross‐section morphology in scanning electron microscope measurements relative to the pristine MWNTs. The crystallinity of the functionalized MWNT‐PET nanocomposites was significantly higher than that of the pristine and acid‐treated MWNTs. FTIR results indicated that the presence of carbon nanotubes induced trans‐conformation of PET chains, and trans conformation was particularly dominant in PET composites incorporating MWNT‐phenyl. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 900–910, 2008  相似文献   

11.
This paper describes a new strategy through noncovalent functionalization of multi-walled carbon nanotubes (MWNTs) by a kind of new copolymer Polyethyleneimine-graft-Polyacrylonitrile for attaching CdSe nanoparticles onto the MWNTs to fabricate Carbon Nanotube/CdSe heterostructures. Polyethyleneimine (PEI), an amino-rich cationic polyelectrolyte, can interact with the MWNTs through electrostatic interaction. Then, CNT/PEI-g-PAN was successfully prepared by in situ atom transfer radical polymerization (ATRP), which did not introduce defects to the structure of CNTs. Thus, CdSe nanoparticles can be covalently coupled to functionalized carbon nanotubes (CNTs) in a uniform and controllable manner. Moreover, this method ensures good dispersion and high stability in any commonly used organic or inorganic solvent. In this manner, our strategy allows the attachment of various colloidal nanoparticles to CNTs, independent of their surface properties, i.e. hydrophilic or hydrophobic. TEM, XRD, EDS and FT-IR are all used to characterize the CNT/CdSe composite materials. In addition, the optical properties are investigated by UV–vis spectrum.  相似文献   

12.
以多壁碳纳米管(MWNTs)为原料,经自由基反应,制备了氰基改性的多壁碳纳米管,然后采用Al-NiCl2.6H2O-THF体系还原氰基得到了氨基化的碳纳米管。通过拉曼光谱仪、热重分析仪、X射线光电子能谱仪和透射电子显微镜对产物的结构与形貌进行了表征。结果表明:氨基通过共价键枝接在MWNTs的表面,氨基化多壁碳纳米管每1000个表面碳原子中有17.1个转化为氨基;该反应条件温和,反应时间短,且不破坏MWNTs的结构。  相似文献   

13.
以多壁碳纳米管(MWNTs)为原料, 经自由基反应, 制备了氰基改性的多壁碳纳米管, 然后采用Al-NiCl2·6H2O-THF体系还原氰基得到了氨基化的碳纳米管。通过拉曼光谱仪、热重分析仪、X射线光电子能谱仪和透射电子显微镜对产物的结构与形貌进行了表征。结果表明:氨基通过共价键枝接在MWNTs的表面, 氨基化多壁碳纳米管每1000个表面碳原子中有17.1个转化为氨基;该反应条件温和, 反应时间短, 且不破坏MWNTs的结构。  相似文献   

14.
Diels–Alder cycloaddition reactions were used to functionalize multiwalled carbon nanotubes (MWNTs) with 1‐benzocylcobutene‐1′‐phenylethylene (BCB‐PE) or 4‐hydroxyethylbenzocyclobutene (BCB‐EO). The covalent functionalization of the nanotubes with these initiator precursors was verified by FTIR and thermogravimetric analysis (TGA). After appropriate transformations/additions, the functionalized MWNTs were used for surface initiated anionic and ring opening polymerizations of ethylene oxide and ε‐caprolactone (ε‐CL), respectively. The OH‐end groups were transformed to isopropylbromide groups by reaction with 2‐bromoisobutyryl bromide, for subsequent atom transfer radical polymerization of styrene or 2‐dimethylaminoethyl methacrylate to afford the final diblock copolymers. 1H NMR, differential scanning calorimetry (DSC), TGA, and transmission electron microscopy (TEM) were used for the characterization of the nanocomposite materials. TEM images showed the presence of a polymer layer around the MWNTs as well as the dissociation of MWNT bundles. Consequently, this general methodology, employing combinations of different polymerization techniques, increases the diversity of diblocks that can be grafted from MWNTs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1104–1112, 2010  相似文献   

15.
A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (MPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium–tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet–visible–near-infrared spectroscopy (UV–vis–NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV–vis–NIR. SEM provides the morphology of the multilayer films. The PtNPs containing multilayer films exhibit high electrocatalytic activity for the reduction of dioxygen. Furthermore, the electrocatalytic activity of the films could be further tailored by simply choosing different cycles in the LBL process. This assembling method for polyelectrolyte functionalized carbon nanotubes and nanoparticles introduces new opportunities for the incorporation of various functionalities into nanotube devices, which, in turn, opens up the possibility of building more complex multicomponent nanostructures.  相似文献   

16.
Covalent functionalization of alkyne‐decorated multiwalled carbon nanotubes (MWNTs) with a well‐defined, azide‐derivatized, thermoresponsive diblock copolymer, poly(N,N‐dimethylacrylamide)‐poly(N‐isopropylacrylamide) (PDMA‐PNIPAM) was accomplished by the Cu(I)‐catalyzed [3 + 2] Huisgen cycloaddition. It was found that this reaction could simultaneously increase the molecular size and bonding density of grafted polymers when PDMA‐PNIPAM micelles were employed in the coupling system. On the other hand, attachment of molecularly dissolved unimers of high‐molecular weight onto the nanotube resulted in low‐graft density. The block copolymer bearing azide groups at the PDMA end was prepared by reversible addition–fragmentation transfer polymerization, which formed micelles with a diameter of ~40 nm at temperatures above its critical micelle temperature. Scanning electron microscopy was utilized to demonstrate that the coupling reaction was successfully carried out between copolymer micelles and alkyne‐bearing MWNTs. FTIR spectroscopy was utilized to follow the introduction and consumption of alkyne groups on the MWNTs. Thermogravimetric analysis indicated that the functionalized MWNTs consisted of about 45% polymer. Transmission electron microscopy was utilized to image polymer‐functionalized MWNTs, showing relatively uniform polymer coatings present on the surface of nanotubes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7187–7199, 2008  相似文献   

17.
A simple strategy for the fabrication of multiwalled carbon nanotubes (MWNTs)–nanocrystal (NC) heterostructures is shown. Different nanoparticles can be covalently coupled to functionalized carbon nanotubes (CNTs) in a uniform and controllable manner. MWNTs have been functionalized by a polymer wrapping—technique that is non-invasive, and does not introduce defects to the structure of CNTs; the polymer is noncovalently adsorbed on the MWNT's surface. Moreover, this method ensures good dispersion and high stability in any commonly used organic or inorganic solvent. In this manner, our strategy allows the attachment of various colloidal nanoparticles to CNTs, independent of their surface properties, i.e. hydrophilic or hydrophobic.  相似文献   

18.
The composite film of polypyrrole and functionalized multi-walled carbon nanotubes (PPy/F-MWNTs) was prepared by electropolymerization. MWNTs were functionalized by sonicating with a concentrated solution of H2SO4/HNO3 (3/1, volume ratio) in a water bath for different times. The carbon nanotubes (CNTs) are cut into smaller portions with more functional groups introduced on their surface when the sonicating time (nominated as functionalization time hereafter) is increased. However, the specific capacitance of the composite film reaches a maximum of 240 F g−1 at the scanning rate of 10 mV s−1 when MWNTs are functionalized for 24 h, which is about 205 F g−1, 225 F g−1 and 232 F g−1, respectively, when MWNTs are functionalized for 6 h, 12 h and 48 h. At a current load of 1.0 A g−1, PPy/F-MWNT composite film functionalized for 24 h (PPy/F-MWNTs (24 h)) retains 93.49% of its initial capacitance after 1,000 cycles of galvanostatic charge/discharge, and the discharge efficiency is higher than 98.15% during cycling. High specific capacitance, good rate performance, fast charge/discharge ability and long cycling life are ascribed to the synergistic effect of the two components to form a porous composite film as well as the easy accessibility of counter ions into the film. Therefore, PPy/F-MWNT (24 h) composite film is a kind of promising electrode material for supercapacitors. The mechanism of underfunctionalization and overfunctionalization of carbon nanotubes is also discussed.  相似文献   

19.
Functionalization of carbon nanotubes (CNTs) is a necessary step to exploit their valuable properties. Due to having several steps and especially acid treatment, most of current methods of functionalization result in irrecoverable defects on CNTs structure. Here, multiwalled carbon nanotubes (MWCNTs) were functionalized with L-arginine in a simple, one-pot and rapid microwave-assisted technique without any acid treatment step. The CNT functionalities were analyzed with infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results confirmed the covalent functionalization of L-arginine with very low defects on CNTs. Also it is found that increase of input powers of microwave in the range 500–900 W, monotonically increase the degree of functionalization. The maximum dispersibility of MWCNT was found ~1.03 mg/mL corresponding to 900 W irradiation. Accounting considerable low treatment time, the method may be applied for large-scale solubilization of MWCNTs in an industrial scale.  相似文献   

20.
A novel approach to fabricate polymer brushes on the surface of carbon nanotubes (CNTs) is proposed. Carboxyl groups on the surface of chemically oxidized CNTs were reacted with hexamethylene diisocyanate, followed by a reaction with methacrylamide to give terminal vinyl groups‐functionalized CNTs, so called “CNT‐mer.” The synthetic procedure was investigated step‐by‐step and the synthesized CNT‐mer was used to grow polystyrene (PS) from CNTs by a simple in situ polymerization in the presence of a thermal initiator. By employing 1H NMR, X‐ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and light scattering, the experimental results were verified. Using this approach, 45% PS with respect to CNTs are grafted on the surface of CNTs with about 4.0 nm thickness. This novel technique would provide a facile route to prepare tailor‐made polymer brushes on the surface of CNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44:6394–6401, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号