首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
张国祥 《岩土力学》2014,299(2):334-338
采用旋转挡土墙计算模型的变换法,将在地震和拟静力法条件下主动土压力的求解问题转化为在静力条件下主动土压力的求解问题。根据在静力条件下水平层分析法的主动土压力推导结果,直接获得在地震条件下主动土压力强度分布、土压力合力及其作用点位置的表达式,并运用图解法得到了临界破裂角的解析解。公式可考虑水平和垂直地震加速度、不同墙背倾角、墙背和坡面倾角与填料存在黏结力和外摩擦角、存在均布超载等诸多因素的影响,公式可以适用于在常用边界和地震条件下黏性土的主动土压力计算。旋转地震角法是将在地震和拟静力法条件下挡土墙计算模型旋转为在静力条件下挡土墙计算模型,但旋转挡土墙计算模型并不改变挡土墙和墙后填土的应力状态,按在静力条件下挡土墙主动土压力求解方法求解在地震和拟静力法条件下主动土压力,该方法大大简化了在地震和拟静力法条件下的主动土压力计算公式推导过程,统一了在拟静力法条件下的地震土压力求解,理论更加完善。  相似文献   

2.
地震条件下挡墙后黏性土主动土压力研究   总被引:1,自引:0,他引:1  
林宇亮  杨果林  赵炼恒 《岩土力学》2011,32(8):2479-2486
采用水平层分析法,得到了地震条件下挡墙后黏性土主动土压力合力和作用点位置、土压力强度分布以及临界破裂角的解析解。公式考虑了水平和垂直地震加速度、挡墙墙背倾角、填料黏聚力和内摩擦角、填料与墙背的黏结力和外摩擦角、均布超载等因素,并分析了这些因素对主动土压力的影响。结果表明,朗肯和库伦理论下的主动土压力公式以及Mononobe-Okabe主动土压力公式与地震条件下的主动土压力公式完全一致。地震条件下的主动土压力强度沿墙高呈非线性分布。水平地震加速度增大了主动土压力,垂直地震加速度使得主动土压力有所减小  相似文献   

3.
陈建功  杨扬  陈彦含  陈小兵 《岩土力学》2020,41(6):1829-1835
挡土墙后黏性土处于主动土压力状态时,墙顶一定深度范围内会产生裂缝,使其较大范围形成零压力区即开裂深度,关于开裂深度问题一直没有得到很好解决。针对变分法求解黏性填土主动土压力中未考虑裂缝的情况,通过一个算例说明了黏性填土表面在主动土压力状态下会产生裂缝。采用折线简化摩尔?库仑强度包络线,利用实际的土体抗拉强度推导了墙背土体开裂深度的计算公式。根据滑裂面上端点的应力边界状态和几何边界条件,对土压力变分计算方法进行了改进,使主动土压力的不确定问题变成了确定性问题。分析了填土内摩擦角、黏聚力、抗拉强度对开裂深度的影响,结果表明,随着内摩擦角和内聚力的增大,土体开裂深度逐渐增加,滑裂面向墙背方法偏移,土压力减小;随着土体抗拉强度的增加,开裂深度逐渐减小,土压力减小,当抗拉强度大到足以抵抗土体的开裂破坏,墙后土体开裂深度为0,这时土压力不再受抗拉强度的影响。  相似文献   

4.
依据库仑土压力理论假设,挡土墙土压力由墙后填土在极限平衡状态下出现滑动楔体产生,推导出考虑滑裂面上填土的黏聚力、墙土间黏聚力、黏性土表面出现张拉裂缝、条形荷载下的黏性土主动土压力计算式,并给出临界破裂角的显式解答。当墙后作用有连续均布荷载或不考虑黏性填土表面出现裂缝时,只需取条形荷载到墙顶的距离或计算的裂缝深度为0即可按相同的方法求解。研究表明,由于未考虑条形荷载对临界破裂角的影响,规范方法得到土压力值偏小。该公式适用范围广,尤其对于条形荷载作用墙后任意位置时均可应用,对实际工程中挡土墙的设计计算具有一定应用价值。  相似文献   

5.
地震作用下挡土墙主动土压力及转动位移分析   总被引:2,自引:0,他引:2  
杨海清  杨秀明  周小平 《岩土力学》2012,33(Z2):139-144
分析地震引起的挡土墙位移及墙后土压力,对于评估挡土墙可靠性具有重要意义。基于拟动力法,考虑时效、地震波传播的相位差、超载、墙背摩擦角、填土黏聚力以及填土开裂等影响,建立地震作用下挡土墙主动土压力计算模型,获得挡土墙绕墙趾转动模式下主动土压力大小、分布形式及作用点高度。同时,考虑挡土墙本身受地震荷载作用的影响,求出挡土墙绕墙趾的转动位移。通过与Mononobe-Okabe法对比可知,文中获得的主动土压力值与Mononobe-Okabe法接近,但Mononobe-Okabe法低估了主动土压力作用点高度,表明采用Mononobe-Okabe法设计存在风险。通过算例分析了地震系数、墙背摩擦系数、超载大小、时间、填土黏聚力和内摩擦角对挡土墙转动位移的影响。  相似文献   

6.
墙背粗糙导致墙后土体应力方向发生偏转,目前,黏性土中考虑土体应力方向偏转对土压力影响的研究较少。为此,本文首先在探讨墙后土体主应力偏转规律的基础上,采用沿主应力迹线分层形成曲线薄层单元。然后,通过分析曲线薄层单元的受力情况,建立曲线薄层单元的静力平衡方程,推导出平动模式下黏性土体土压力沿墙高分布的公式,进而获得黏性土土压力分析新方法。最后,将本文方法与实测结果和现有理论进行对比验证和参数分析,验证本文方法的可靠性和合理性。研究结果表明:考虑墙土摩擦效应的计算结果更能准确反映黏性土体土压力沿墙高的分布规律;土压力大小随黏聚力增大而减小;随着墙土摩擦角的增大,土压力合力逐渐减小,作用点高度缓慢升高。  相似文献   

7.
林宇亮 《岩土力学》2012,33(6):1917-1918
笔者拜读了发表在《岩土力学》2012年第33卷第1期上的"地震条件下挡土墙主动土压力及其分布的统一解"一文[1](以下简称原文)。笔者对原文有几处疑问,望能得到释疑和解答。  相似文献   

8.
多级重力式挡土墙土压力分布试验研究   总被引:2,自引:0,他引:2  
范瑛  雷洋  章光 《岩土力学》2010,31(10):3125-3129
对某高填方路基挡土墙的现场实测水平土压力数据进行了分析,研究表明:该挡墙墙后土压力呈曲线分布,类似字母"R",土压力最大值出现在挡墙底部,而下部的值略小于底部值,最小值出现在挡墙中部。在本级挡墙施工时,墙后第1、2层土压力值接近静止土压力值,大于主动土压力值,第3、4层土压力值小于主动土压力值;在其上若干级挡墙或边坡施工时墙后各点土压力值均小于主动土压力值,即随着填土深度的变化挡墙后各点的土压力系数是在不断变动着的,土压力系数与土压力数值大小的变化规律一致。同时,土压力作用点介于(0.4~0.5)H,且随填土深度增加作用点位置上移;每级挡土墙之间的平台宽度越小,上级挡土墙对下级挡土墙的影响就越大,土压力作用点就越高。研究结论对高填方多级挡土墙的设计具有理论指导意义。  相似文献   

9.
挡土墙主动土压力分布与侧压力系数   总被引:39,自引:4,他引:39  
王元战  李新国  陈楠楠 《岩土力学》2005,26(7):1019-1022
采用库仑土压力理论的假设:挡土墙土压力是由墙后填土在极限平衡状态下出现的滑动楔体产生,在该滑动楔体上沿竖向取水平薄层作为微分单元体,通过作用在单元体上的水平力、竖向力和力矩平衡条件,建立挡土墙上土压力强度的一阶微分方程式,给出了土侧压力系数、土压力强度、土压力合力和土压力合力作用点高度的理论公式,并分析了填土内摩擦角和墙背摩擦角对土侧压力系数、土压力强度、土压力合力、土压力合力作用点和墙底抗倾稳定性的影响。  相似文献   

10.
在新版《建筑边坡工程技术规范》(GB 50330-2013)中,所采用的新的挡土墙地震主动土土压力公式存在一定计算问题及未给出作用点高度计算公式。针对这一问题,结合既有研究成果,给出计算公式的完整推导过程和地震主动土土压力作用点高度计算公式,并指出了该规范中的挡土墙地震主动土压力公式的错误。公式推导采用旋转挡土墙计算模型的变换法,将在地震条件下主动土压力的求解问题转化为在静力条件下主动土压力的求解问题,将经旋转地震角后的土压力计算参数,套用非地震条件下的主动土压力计算公式推导过程,直接获得在地震条件下主动土压力表达式,使以往地震土压力计算模型繁琐的求解过程得到很大程度的简化。  相似文献   

11.
Knowledge of seismic active earth pressure behind rigid retaining wall is very important in the design of retaining wall in earthquake prone region. Commonly used Mononobe-Okabe method considers pseudo-static approach, which gives the linear distribution of seismic earth pressure in an approximate way. In this paper, the pseudo-dynamic method is used to compute the distribution of seismic active earth pressure on a rigid retaining wall supporting cohesionless backfill in more realistic manner by considering time and phase difference within the backfill. Planar rupture surface is considered in the analysis. Effects of a wide range of parameters like wall friction angle, soil friction angle, shear wave velocity, primary wave velocity and horizontal and vertical seismic accelerations on seismic active earth pressure have been studied. Results are provided in tabular and graphical non-dimensional form with a comparison to pseudo-static method to highlight the realistic non-linearity of seismic active earth pressures distribution.  相似文献   

12.
赵琦  朱建明 《岩土力学》2014,35(3):723-728
当挡土墙附近存在临近建筑地下室外墙时,其挡土墙土压力与传统的Rankine理论基于无限半空间体假定不符,因而在这种新的工程背景下需要采用合适的理论来计算挡土墙土压力及其作用点高度。已有的研究表明,这种条件下土体的变形趋势可分为上、下两大部分:上部土体变形类似于Terzaghi的活动门试验,土体沿着墙体下滑,而下部土体则沿着土楔形体而变形。因而将土拱效应用于求解挡土墙土压力的计算分成了上、下两大部分考虑。假定土拱形状为圆弧,基于主应力旋转概念分别给出了上、下两部分的侧向土压力系数,运用水平微分层析法基于静力平衡思想给出了两部分的水平向主动土压力分布公式。最后通过坐标平移的方式给出了主动土压力合力及其作用点高度的表达式。算例表明,计算结果与数值计算结果较为接近,其结果对实际工程有一定的参考价值。  相似文献   

13.
王仕传  程桦 《岩土力学》2011,32(7):2139-2145
墙背土压力分布和挡土墙变位模式、位移大小密切相关。考虑位移影响的土压力分析方法是在已知挡土墙位移大小的情况下,方可计算墙背土压力分布。对于绕墙趾向外转动的刚性挡土墙,从满足倾覆稳定性和基底压应力偏心距要求的角度,提出了确定主动平衡状态时墙顶位移大小和墙背土压力分布的方法,并分析挡土墙宽度和墙背摩擦系数对墙背土压力分布的影响。分析结果表明:主动平衡状态时,墙背土压力均大于库仑主动土压力,墙背土压力产生绕墙趾的倾覆弯矩同样大于由库仑主动土压力计算的倾覆弯矩;挡土墙宽度越大,墙背土压力越接近静止土压力;随着宽度的减小,墙背土压力由静止土压力分布向库仑主动土压力逐渐过渡;摩擦系数主要影响倾覆弯矩,对于墙背光滑的挡土墙,满足倾覆稳定性要求的墙宽显著提高  相似文献   

14.
The designing of retaining walls requires the complete knowledge of earth pressure distribution. Under earthquake conditions the design needs special attention to reduce the devastating effect, but under seismic conditions, the available literature mostly uses the pseudo-static analytical solution as an approximate to the real dynamic nature of the complex problem. This paper shows a detailed study on the seismic passive earth thrust behind a cantilever retaining wall with inclined backfill surface by pseudo-dynamic analysis. A planar failure surface has been considered. The effect of variation of parameters such as soil friction angle, wall friction angle and back fill inclination have been explored. A complete analysis shows that the time dependent non-linear behaviour of the pressure distribution obtained in the present method results in more realistic design values of earth pressures under earthquake conditions. Results are provided in tabular and graphical non-dimensional form and compared thoroughly with the existing values in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号