首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Blends of small percentage of plastic grade polypropylene with fiber grade polypropylene are studied in unoriented and oriented states. A 3% blend sample has a higher spherulitic growth rate, and improved mechanical behavior in drawn fiber state as compared to the parent sample. These changes are related to the presence of bimodal and trimodal crystal texture of polypropylene in the blend, respectively. At a higher blend percent, specifically at 10 and 15%, the mechanical properties of the drawn fiber are inferior and these are related to partial phase segregation of the components.  相似文献   

2.
Polypropylene (PP) filaments are prepared by blending two different molecular weight components of PP. A melt‐spinning process to produce filaments includes mixing of components, extrusion, and two‐stage drawing, followed by a unique Gradient Drawing? process. Blending results in highly deformable as‐spun filaments with high draw ratios. For 90:10 blends of PP samples with melt flow indexes of 35 and 3, a high level of crystallinity and crystalline and amorphous orientations are obtained. A sonic modulus of 28 GPa, dynamic modulus of 20 GPa, tensile modulus of 16 GPa, and tenacity of 667 MPa are achieved. These samples are dimensionally stable up to ~100°C. All steps in the production of the filaments are continuous. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1021–1028, 2005  相似文献   

3.
The mechanical properties of multifilament yarns, spun from the blends of a plastic‐grade polymer with a fiber‐grade CR‐polymer in the composition range of 10–50 wt % added, were investigated. The predicted modulus of a two‐phase blend, calculated from several representative equations, was compared with the elastic modulus of drawn yarns, determined from the stress vs. strain curve and dynamic modulus obtained from the sound velocity measurements. The best fit was achived with the Kleiner's simplex equation. For both the static and dynamic elastic modulus, the largest negative deviation is seen at the 80/20 and 60/40 plastic/fiber‐grade polymer blend composition, while the largest positive deviation is seen at the 90/10 plastic/fiber‐grade polymer blend composition, suggesting good compatibility of both polymers, when only a small percent of the fiber‐grade CR‐polymer is added. Improved spinnability and drawability of blended samples led to the yarns with the tensile strength over 8 cN/dtex, elastic modulus over 11 GPa and dynamic modulus over 15.5 GPa. Structural investigations have shown that the improved mechanical behavior of blended samples, compared to the yarn spun from the pure plasic‐grade polymer, is the consequence of a higher degree of crystallinity, and above all, of a much higher orientation of macromolecules. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1211–1220, 2000  相似文献   

4.
New more simple and easier strategy for synthesizing thermoplastic polyurethane pressure sensitive adhesives (TPU PSAs) has been proposed. Thus, the properties of the TPU PSAs were adjusted by fixing the NCO/OH ratio to 1.1 and varying the content of the hard segments by mixing high molecular weight and low molecular weight polyether polyols during TPU synthesis. The thermoplastic polyurethanes have been synthesized with methylene diisocyanate (MDI), 1,4 butanediol chain extender and different mixtures of two polypropylene glycols (PPGs) polyols with different molecular weights (450 and 2000 Da). TPUs with different hard segments content (12.5–38.7%) were synthesized and their pressure sensitive adhesive properties depended on their hard segments contents and degree of phase separation. In general, the TPU PSAs with higher hard segments content exhibited low probe tack and low loop tack regardless of the nature of the metallic and polymeric substrate. In contrast, the 180° peel strength depended noticeably on the nature of the polymeric substrate and on the hard segments content of the TPU. TPU PSAs with hard segments content lower than 20.9% were general purpose or removable PSAs and the ones with higher hard segments content were high shear PSAs.  相似文献   

5.
The dynamic rheological and mechanical properties of the binary blends of two conventional high‐density polyethylenes [HDPEs; low molecular weight (LMW) and high molecular weight (HMW)] with distinct different weight‐average molecular weights were studied. The rheological results show that the rheological behavior of the blends departed from classical linear viscoelastic theory because of the polydispersity of the HDPEs that we used. Plots of the logarithm of the zero shear viscosity fitted by the Cross model versus the blend composition, Cole–Cole plots, Han curves, and master curves of the storage and loss moduli indicated the LMW/HMW blends of different compositions were miscible in the melt state. The tensile yield strength of the blends generally followed the linear additivity rule, whereas the elongation at break and impact strength were lower than those predicted by linear additivity; this suggested the incompatibility of the blends in solid state. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
In this work, different PVDF grades were used for producing hollow fibers for application in seawater desalination by membrane distillation (MD). In particular, PVDF Solef® homopolymers, with increasing molecular weight and different crystallinity, were used, also in blend, for preparing polymeric dopes. The effect of PVDF molecular weight on the dope viscosity was investigated. Then, a group of six polymeric dopes, having the same additive composition and the same viscosity (about 7000 mPa s), but containing different PVDF types was selected. Spinning experiments were carried out under the same conditions to highlight the effect of PVDF type on the produced hollow fibers’ morphology and properties. It was evidenced that polymer concentration plays a major role in determining the final membrane morphology; in particular, the formation of macrovoids is more affected by polymer concentration than dope viscosity. Fibers’ mechanical properties, porosity and pore size were found to be also strongly affected by polymer concentration. Finally, the produced hollow fibers were tested in a membrane distillation unit working under vacuum (VMD). Tests were carried out both feeding pure water and synthetic seawater. It was found that VMD performance, both in terms of flux (J) and solute separation factor (α), being connected to fibers’ morphology and porosity, is also clearly dependent on polymer concentration.  相似文献   

7.
The addition of very small amounts of carefully selected polymers by melt blending has been found to radically change the flow properties at spinning of conventional polymers such as polyethylene terephthalate, nylon 66, and polypropylene. This has a large effect on spun properties, especially at high wind-up speeds. The additive polymers used have included liquid crystal polymers, polyethlene, polyethylene glycol, and nylon 66. A major phenomen is a considerable lowering of spun orientation, or wind-up speed suppression. In order to activate the non-liquid crystal polymers to achieve this effect special spinning conditions are necessary. The mechanism is viewed as being nonuniform extensional flow in a two-phase system and not molecular interaction.  相似文献   

8.
The morphology and rheological behavior of cyclic olefin copolymer (COC) blends with two molecular weights of polyhexene-1 (PH-1, PH-1-UH [ultra-high]) were investigated at a wide range of compositions. Morphology of the blends at low concentrations of polyhexene-1 s showed a droplet-matrix structure and changed to a co-continuous morphology at intermediate concentrations. The rheological Cole-Cole plots and viscosity versus composition confirmed immiscibility of the blends. The interfacial interaction of blends phases was investigated and Complex viscosity and storage modulus versus frequency were measured and the results were consistent with high interfacial strength between the COC and high concentrations of PH-1-UH which increases the melt strength of the blends. Relaxation time spectra and Tan δ versus frequency curves were analyzed and these results were consistent with a high degree of entanglements between the COC and PH-1-UH chains in the PH-1-UH-rich compounds which in turn increased the elasticity. Damping factor measurements and calculation of interfacial tension using emulsion models showed that in the COC-rich blends, the interfacial interaction COC/PH-1 blends is higher than that of the COC/PH-1-UH blends and thus the elasticity and particles form relaxation time of the PH-1 blends are higher compared to PH-1-UH blends.  相似文献   

9.
C.G. Martins  D.R. Paul 《Polymer》2009,50(7):1743-1057
Rubber toughened polypropylene nanocomposites using two types of modified montmorillonite (organoclay) were explored with the objective of achieving an improved balance between stiffness and toughness. The effect of three blending sequences on microstructure and properties of the ternary nanocomposites was also investigated. A commercial grade of ethylene/vinyl acetate copolymer (EVA) containing 18 wt% of vinyl acetate was used as the impact modifier for polypropylene and an acrylic acid grafted polypropylene was used to compatibilize the systems studied. The toughened nanocomposites samples were prepared by melt compounding in a twin-screw extruder; the morphology and mechanical properties of the resulting materials were characterized by X-ray scattering, electron microscopy and tensile and impact testing. The results show that incorporation of EVA increases the toughness of the polypropylene but its stiffness decreased markedly due to the incorporation of the low modulus component. The addition of organoclay increased the modulus slightly for all the ternary nanocomposites with respect to the blend, but it remains lower than that of neat PP. Surprisingly, addition of organoclay to the blends promoted a drastic increase in the notched Izod impact strength and a considerable alteration of the shape of the dispersed EVA phase when the organoclay is located in this phase. Moreover, it was found that the blending sequence effects on the morphology and properties of the mixtures are dependent on the organoclay used.  相似文献   

10.
11.
The processing of ultrahigh molecular weight polyethylene (UHMWPE) by the addition of polypropylene (PP) and high‐density polyethylene (HDPE) was investigated. The results show that the addition of PP improves the processability of UHMWPE more effectively than does the addition of HDPE. UHMWPE/PP blends can be effectively processed with a twin‐roller and general single‐screw extruder. In the extrusion of UHMWPE/PP blends, PP is enriched at the surface of the blend adjacent to the barrel wall, thus increasing the frictional force on the wall; the conveyance of the solid down to the channel can then be carried out. The melt pool against the active flight flank exerts a considerable pressure on the UHMWPE powder in the passive flight flank, which overcomes the hard compaction of UHMWPE. The PP penetrates into the gaps between the particles, acting as a heat‐transfer agent and adhesive, thus enhancing the heat‐transfer ability in the material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 977–985, 2004  相似文献   

12.
Fibers from polypropylene and polypropylene/vapor grown nano carbon fiber composite have been spun using conventional melt spinning equipment. At 5 wt% nano carbon fiber loading, modulus and compressive strength of polypropylene increased by 50 and 100%, respectively, and the nano carbon fibers exhibited good dispersion in the polypropylene matrix as observed by scanning electron microscopy.  相似文献   

13.
The physical basis and results of a theory of the liquid state are outlined. Quantitatively successful applications to the pressure-volume-temperature relations of n-paraffins and high polymer melts are illustrated. An extension of the theory to mixtures permits corresponding analyses of various combinations of low and high molecular weight components, including composites. Finally, results of the theory can be introduced into discussions of such transport properties as viscous flow and creep, based on free volume concepts.  相似文献   

14.
Binary and ternary blends composed of poly(lactic acid) (PLA), starch, and poly(ethylene glycols) (PEGs) with different molecular weights (weight‐average molecular weights = 300, 2000, 4000, 6000, and 10, 000 g/mol) were prepared, and the plasticizing effect and miscibility of PEGs in poly(lactic acid)/starch (PTPS) or PLA were intensively studied. The results indicate that the PEGs were effective plasticizers for the PTPS blends. The small‐molecule plasticizers of PEG300 (i.e., the Mw of PEG was 300g/mol) and glycerol presented better plasticizing effects, whereas its migration and limited miscibility resulted in significant decreases in the water resistance and elongation at break. PEG2000, with a moderate molecular weight, was partially miscible in sample PTPS3; this led to better performance in water resistance and mechanical properties. For higher molecular weight PEG, its plasticization for both starch and PLA was depressed, and visible phase separation also occurred, especially for PTPS6. It was also found that the presence of PEG significantly decreased the glass‐transition temperature and accelerated the crystallization of the PLA matrix, depending on the PEG molecular weight and concentration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41808.  相似文献   

15.
The wear and friction behavior of ultrahigh molecular weight polyethylene (UHMWPE)/ polypropylene (PP) blends was studied. The addition of PP improves processability and the anti‐wear properties of UHMWPE. The friction coefficient and wear rate of pure UHMWPE are much higher than those of UHMWPE/PP blends under the same conditions, and the wear rate of UHMWPE is more sensitive to load and wear time than that of the UHMWPE/PP blend. Long scratch grooves and cracks occurred in the worn surface of UHMWPE, while no such serious damage was observed in the worn surface of the UHMWPE/PP blend. Atomic Force Micrograph using the contact mode indicated that the friction force between pure UHMWPE and Si3N4 tip is much higher than that for the UHMWPE/PP blend, which is consistent with the results from macro‐friction testing.  相似文献   

16.
The excellent characteristics of polymeric nanofibers with diameters less than 1 μm such as the enormous specific surface result in a dramatic increase in a variety of functional applications. In this article, polymer blends of isotactic polypropylene (iPP) and polylactide (PLA) were fabricated through a twin‐screw extruder. The extrudates were prepared at various processing conditions and the iPP nanofibers were obtained by removal of the PLA matrix from the drawn samples. The influences of drawing ratio, the processing temperature, and the blend ratio of iPP/PLA on the morphology development of iPP phase were investigated by scanning electron microscopy. It was found that the uniformed iPP nanofibers with averaged diameters less than 500 nm were fabricated by the suitable processing parameters. Otherwise, the processing immiscibility and rheological behavior of iPP/PLA blends were studied by means of dynamic mechanical analysis and capillary rheometer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Blends of melt-mixed butyl rubber (IIR) and anhydride-modified polypropylene (mPP) were observed to exhibit an insoluble fraction after extraction with boiling xylene. Possible origins of this insoluble fraction were carefully examined and it was unequivocally shown that the insoluble portion corresponds to the mPP gel formed via ionic crosslinking. The ion responsible for the crosslinking of mPP was identified as Al3+ (from residue of the aluminum chloride catalyst used in the synthesis of IIR) at a trace level of 200 ppm, which presumably diffused from the IIR phase to the mPP phase during the extraction process. In the case of dynamically vulcanized mPP/IIR blends, the formation of mPP gel from this ionic mechanism was found to be insignificant. This is attributed to the strong tendency of the phenolic curative to form ionic complexes with the Al3+ ion in the IIR phase.  相似文献   

18.
A photon‐transmission method was used to probe the evolution of transparency during film formation from polystyrene (PS) particles with different molecular weights. The latex films were formed at room temperature from the PS particles having two different average molecular weights and annealed at elevated temperatures in various time intervals above the glass transition (Tg). Onset temperatures (TH) at given times (τH) for the optical clarity of films formed from low (LM) and high molecular (HM) weight PS particles were used to calculate the healing activation energies for the minor chains and found to be 22.0 ± 0.5 and 27.0 ± 0.6 kcal/mol, respectively. The increase in the transmitted photon intensity, Itr, above the TH was attributed to increase in the number of interfaces that disappeared. The Prager–Tirrell (PT) model was employed to interpret the increase in crossing density at the junction surface. The backbone activation energies (ΔE) were measured and found to be 127.8 ± 2.5 kcal/mol for a diffusing polymer chain across the junction surface for LM and HM latex films. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 866–874, 2000  相似文献   

19.
20.
Blends of poly(ethylene terephthalate-Co-p-oxybenzoate), PET/PHB, with poly(ethylene terephthalate), PET, have been studied in the form of as-spun and drawn fibers. DSC melting and crystallization results show that the PET is compatible with LCP and the crystallization of PET decreases by the addition of LCP in the matrix. Upon heating above the crystal melting temperature of PET, the blend shows good dispersion of LCP in the PET matrix. Wide angle X-ray diffraction of drawn blended fibers show the possible formation of LCP oriented domains. The mechanical properties of drawn fiber up to 10 wt% LCP composition exhibit significant improvement in tensile modulus and tensile strength with values of 17.7 GPa and 1.0 GPa, respectively. Values of modulus are compared with prediction from composite theory, assuming the blend system as nematic domains of LCP. dispersed in PET matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号