首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequences of the nuclear ribosomal DNA internal transcribed spacers (ITS1 and ITS2), the 5.8S, and short stretches of the adjacent 18S and 26S coding regions were determined in isolates from four disjunct Cladophora albida (Huds.) Kütz. populations (NE-America, W-Europe, Japan, and W-Australia). The two Pacific isolates share nearly identical ITS sequences as do the two Atlantic isolates. In contrast, interoceanic comparisons exhibit a 21% sequence difference. Variation within ITS regions is useful for identification of population groups on a regional or oceanic scale. However, both spacers are characterized by numerous repeat motifs as well as point mutations, which result in alignment problems at the interspecific level within Cladophora.  相似文献   

2.
Freshwater species of Cladophora (Chlorophyta) are globally distributed and occupy an unusually wide range of ecological habitats. Delineating species is difficult because most easily observed morphological traits are highly variable and because sexual reproduction has not been clearly documented. Synthesizing ecological data on freshwater Cladophora species is problematic because it is unclear whether freshwater Cladophora species comprise many genetically distinct species or a few ecologically and morphologically variable and/or plastic species. We determined nucleotide sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal cistron of freshwater Cladophora species from a wide range of habitats and geographic locations. We compared these sequences to those derived from culture collections of C. fracta and C. glomerata, the two most commonly reported freshwater Cladophora species. Cladophora fracta and C. glomerata had very similar ITS sequences (95.3%). All other sequences were identical to those from the C. fracta or C. glomerata culture collections with the exception of one California sample that was similar to both C. fracta (95.6%) and C. glomerata (92.4%). ITS genotypes did not correlate with morphology or geography. This analysis shows that common freshwater Cladophora species comprise very few (possibly one) ecologically and morphologically variable species.  相似文献   

3.
The fine structure of zoosporogenesis, zoospore germination, and early gametophyte development in Cladophora surera Parodi et Cáceres were studied. Zoosporogenesis started with simultaneous meiosis in all nuclei of apical initial cells. The resulting haploid nuclei duplicated in turn by successive centric, closed mitoses. Then, each initial cell divided into two short zoosporangia. Numerous vacuoles appeared around each sporic nucleus. The delimitation of uninucleate zoosporocytes occurred by cytokinetic furrows produced by the coalescence of tiny, clear vesicles, without microtubules. Final shape of the zoospore resulted from gradual expulsion of vacuoles from the cell body. Mature biflagellate zoospores exhibited a conspicuous apical papilla containing fine granular globules, the basal apparatus, and a microtubular "umbrella" formed by numerous cortical microtubules that ran backward the length of the cell body. The chloroplast showed a conspicuous eyespot. The zoosporangial wall disorganized at the pore through which the zoospores were liberated. Zoospores settled on a substrate by their anterior papilla secreting an adhesive. Germination involved retraction of the apical papilla, loss of the "umbrella" microtubules and eyespot, and the lateral absorption of the entire flagellar apparatus, i.e. basal apparatus plus axoneme, into the cytoplasm. Early gametophyte development involved the synthesis of a thin, young cell wall, the development of outer peripheral vacuoles, the appearance of the marginal reticulate chloroplast, and the formation of the first central vacuoles derived from abundant endoplasmic reticulum. Close to the plasmalemma ran longitudinally oriented cortical microtubules. Eventually, the germling developed an achlorophylic, elongated rhizoidal portion.  相似文献   

4.
In all seven genera belonging to the order Siphonocladales and in two genera of the Cladophorales (Chlorophyta) that were examined, extracts of total DNA contained abundant low molecular weight (LMW) molecules. This DNA typically ranged in size from 1.5 to 3.0 kb among the different genera studied. The complexity of the populations of molecules found in different genera also varied with regard to sizes and numbers of bands evident in electrophoresis gels. Our data suggest that the LMW DNA is ubiquitous among these algae since it occurred in each of our six isolates of Ernodesmis verticillata (Kützing) Børgesen collected in both the Caribbean and the Gulf of California. The LMW DNA from Ernodesmis and Ventricaria ventricosa (J. Agardh) Olsen et J. West was denser than high molecular weight (HMW) DNA in CsCl/bisbenzimide gradients. Ultrastructurally, the LMW DNA molecules were linear, averaging 0.65 μm (Ernodesmis) and 1.0 μm (Ventricaria) in length. Approximately 2%–5% of the former possessed an apparent loop or lariat at one end, as visualized in the electron microscope after rotary shadowing. The LMW DNA molecules appeared to be predominantly double-stranded DNA based upon staining with acridine orange. The 2.2-kb DNA from Ernodesmis has features typical of plasmids in that it rapidly reannealed after heat denaturation, and it was selectively enriched in an alkaline-lysis extraction procedure. In denaturing gels, this DNA migrated at >4.0 kb, indicating that the molecules may actually be single-stranded DNA species with intramolecular base pairing, each containing a long inverted repeat folded back on itself in a hairpin conformation in the native state. Digestion with mung bean nuclease revealed that additional single-stranded regions may occur in many of the LMW molecules, in addition to the hairpin loop. Although the endonuclease DNase I rapidly digested the LMW DNA, neither exonuclease III nor lambda exonuclease digested it. This suggests that the ends of these DNA molecules are protected. Collectively, the data indicate that members of the Siphonocladales and Cladophorales contain linear plasmid-like DNA molecules that appear to have a novel combination of features.  相似文献   

5.
Nucleotides were compared at 988 sites, spanning both internal transcribed spacers (ITS1 and ITS2) of the nuclear ribosomal DNA, among 17 isolates of the green alga Cladophoropsis membranacea (Hofman Bang ex C. Agardh) Boergesen and two isolates of Struvea anastomosans (Harvey) Piccone and Grunow. Collections were made from Bonaire, Curaçao, St. Croix, the Canary Islands, the Cape Verde Islands, Mauritania, Syria, the Red Sea, Okinawa, and Hawaii. Two nucleotide substitutions were found between the sequenced coding regions of C. membranacea and S. anastomosans. Of the 720 nucleotides compared in ITS1 and ITS2, an average of 6.7% sequence divergence was found within C. membranacea and 17.4% between C. membranacea and S. anastomosans. Sequences were analyzed using maximum parsimony. Phylogenetic hypotheses were compared with the biogeographic hypothesis of an east-west Tethyan vicariance. Results of the study allow the identification of widely dispersed biogeographic populations, the identification of an underlying Tethyan imprint, and support for the hypothesis that dispersal has occurred between the Caribbean and the tropical eastern Atlantic. These results demonstrate the usefulness of ITS sequences at the sub-specific level in C. membranacea.  相似文献   

6.
We describe three coccoid green algal strains belonging to a new genus and species, Marinichlorella kaistiae Z. Aslam, W. Shin, M. K. Kim, W.‐T. Im et S.‐T. Lee, in seawater samples from the South Sea of Korea. These strains were maintained at 25°C–30°C under a 12:12 light:dark (L:D) photoregime in an ASN‐III medium at a pH of 7.5. These strains were tolerant of high salinity (7.5% NaCl) (w/v) and temperature (40°C). Molecular phylogenetic analyses using 18S rRNA gene sequence data resolved these organisms to a clade separate from green coccoid algae with similar morphology. The DNA–DNA hybridization results demonstrated very low relatedness of these organisms to phylogenetically related species of the genera Chlorella and Parachlorella. The molar guanine + cytosine content (G + C mol%) of the genomic DNA of these organisms ranged from 64.7 to 69.1 mol%. Based on molecular phylogeny, DNA–DNA hybridization, and other morphological studies, we propose a new taxon, Marinichlorella kaistiae, to describe these strains and classify them in the family Chlorellaceae. The type strain is KAS007T (= KCTC AG10303T = IAM C‐620T).  相似文献   

7.
Populations of Cladophora with two different levels of ploidy, n = 18/2n = 36 (18/36) and n = 24/2n = 48 (24/48), are present in creeks in the southern part of the province of Buenos Aires, Argentina. The goals of our study were to 1) relate the number of apical branches · mm?2 in 18/36 and 24/48 populations with the water velocity at the collection site; 2) correlate the number of apical ramifications · mm?2 in plants of the same population (24/48) growing in sectors with distinct water velocities; 3) compare cell length among populations with different ploidy levels, analyzing the sources of variation in different sectors of the same creek and in different plants of the same sector; and 4) analyze the sources of variation in cell length in 24/48 populations, including variations among different creeks. Our results suggest that 1) the number of branches · mm?2 tends to increase with higher water velocity; 2) the 24/48 populations have more ramifications · mm?2 than the 18/36 ones; 3) the length of vegetative cells is not an adequate criterion for differentiating between 18/36 and 24/48 populations; and 4) variations in vegetative cell length in 24/48 populations are highly significant among plants from different sectors of the same creek.  相似文献   

8.
Species and varieties in the genus Eudorina Ehrenberg (Volvocaceae, Chlorophyta) were evaluated on the basis of phylogenetic analyses of the large subunit ofribulose-1,5-bis-phosphate carboxylase/oxygenase (rbcL) gene sequences from 14 strains of four Eudorina species, as well as from nine species of Pleodorina and Volvox. The sequence data suggested that 10 of the 14 Eudorina strains form three separate and robust monophyletic groups within the nonmonophyletic genus Eudorina. The first group comprises all three strains of E. unicocca G. M. Smith; the second group consists of one of the E. elegans Ehrenberg var. elegans strains, the E. cylindrica Korshikov strain, and both E. illinoisensis (Kofoid) Pascher strains; and the third group consists of two monoecious varieties of E. elegans [two strains of E. elegans var. synoica Goldstein and one strain of E. elegans var. carteri (G. M. Smith) Goldstein]. In addition, E. illinoisensis represents a poly- or paraphyletic species within the second group. The remaining four strains, all of which are assigned to E. elegans var. elegans, are nonmonophyletic. Although their position in the phylogenetic trees is more or less ambiguous, they are ancestral to other taxa in the large anisogamous/oogamous monophyletic group including Eudorina, Pleodorina, and Volvox (except for sect. Volvox). Thus, the four Eudorina groups resolved in the present molecular phylogeny do not correspond with the species concepts of Eudorina based on vegetative morphology, but they do reflect the results of the previous intercrossing experiments and modes of monoecious and dioecious sexual reproduction.  相似文献   

9.
A single cell divides to multiply, but not all cells follow the same pattern of division. We studied cell division in seven strains from six species belonging to the genus Nannochloris Naumann and classified their modes of cell division into three types: binary fission ( N. bacillaris Naumann), budding ( N. coccoides Naumann), and autosporulation resulting in the formation of two to four daughter cells ( N. maculata Butcher, N . sp. SAG 251-2, N. atomus Butcher CCAP 251/7 and SAG 14.87, and N. eucaryotum [Wilhelm et al.] Menzel and Wild). To determine the evolutionary relationships among these multiple modes of cell division, we investigated the strains' genome sizes, copy number of actin genes, and phylogeny. The genome sizes were determined by counter-clamped homogeneous electric fields electrophoresis and fluorimetry. The genomes are very small and range from 12.6 Mbp ( N. maculata ) to 47.4 Mbp ( N. atomus SAG 14.87). The genomes of Nannochloris species seem to be among the smallest for free-living eukaryotes. Nannochloris bacillaris (binary fission), N. coccoides (budding), Nannochloris sp. (two-cell type of autosporulation), and N. eucaryotum (multicell type of autosporulation) contain a single actin gene, whereas N. maculata (two-cell type of autosporulation) and two strains of N. atomus (two-cell type of autosporulation) contain two actin genes. This suggests that the actin gene was duplicated in this eukaryote, which has a very small genome. Phylogenetic analyses of partial actin gene sequences suggest that autosporulation is the ancestral mode of cell division.  相似文献   

10.
Photosynthetic pigments were analyzed by HPLC for 27 samples of the Cladophorales (Ulvophyceae, Chlorophyta). The carotenoid compositions of the examined algae were classified into three types based on the final compound of biosynthesis of the α‐carotene branch: lutein type, characterized by containing lutein as a major carotenoid and lacking loroxanthin and siphonaxanthin; loroxanthin type, characterized by containing loroxanthin and lacking siphonaxanthin; and siphonaxanthin type, characterized by containing siphonaxanthin. We constructed molecular phylogenetic tree of the species examined in the present study using 18S rRNA gene sequences and mapped the carotenoid types of the species onto the tree. The molecular phylogenetic analysis divided the Cladophorales into two major clades, clade 1 and Aegagropila‐clade (clade 2), and divided clade 1 into subclade 1‐1 and subclade 1‐2. All the examined species positioned in the Aegagropila‐clade and those of the subclade 1‐1 belonged to the loroxanthin type, whereas both lutein type and siphonaxanthin type appeared only in the subclade 1‐2. The clades delineated by molecular phylogenetic analysis were congruent with distribution of the carotenoid types, indicating that the carotenoid types are of taxonomic significance in the Cladophorales. Considering the distribution pattern of these carotenoid types and minimum state changes in the Cladophorales, we concluded that the loroxanthin type was the primitive (plesiomorphic) state and the siphonaxanthin type and lutein type appeared in the subclade 1‐2 as advanced (apomorphic) state within this order and suggested that the cladophoralean siphonaxanthin type would have been secondarily acquired.  相似文献   

11.
The phylogenetic position of a freshwater green alga, Aegagropila linnaei (Cladophorales, Ulvophyceae), was investigated using nuclear 18S rRNA gene sequences. This alga has usually been called Cladophora aegagropila (L.) Rabenhorst or Cladophora sauteri (Nees ex Kütz.) Kütz. Based on morphology, it was formerly classified into the section Aegagropila or into the subgenus Aegagropila, together with several marine species of the genus Cladophora. This classification is not supported by the present phylogenetic analyses in which two very distinct Cladophorales clades are recognized. Aegagropila linnaei groups together in a well‐supported clade with Cladophora sp., Pithophora sp., Chaetomorpha okamurae, Arnoldiella conchophila, Wittrockiella lyallii, and Cladophora conchopheria. Aegagropila linnaei and its closely related species share some ultrastructural and biochemical characteristics, like pyrenoid structure, carotenoid composition, and cell wall composition. Freshwater species, included in the analysis, were located in two distantly related lineages, indicating that adaptation from a marine to a freshwater habitat has happened at least twice independently in the Cladophorales.  相似文献   

12.
Four related species in the unicellular volvocalean genus Carteria [C. crucifera Pascher, C. eugametos Mitra, C. inversa (Korshikov) Bourrelly and C. cerasiformis Nozaki et al.] were delineated on the basis of recent comparative light and electron microscopy of a large number of culture strains. However, the species thus delineated may not represent natural or monophyletic entities. In the present study, 1128 base pairs of the chloroplast protein-coding gene (large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase gene) from 12 Carteria strains representing the four species as well as from related volvocalean species were analyzed to elucidate the phylogenetic status of the taxonomic or morphologic species of Carteria. The sequence data showed that the 12 Carteria strains exhibit four robust monophyletic groups which are strictly consistent with the four taxonomic species. These results are discussed in relation to contrasting results found in other microalgal genera. It is concluded that phylogenetic analysis, based on DMA sequence data and comparative morphologic characterization of species and using a large number of culture strains, is essential to a natural system of microalgal species taxonomy.  相似文献   

13.
Current taxonomy of the Bryopsidales recognizes eight families; most of which are further categorized into two suborders, the Bryopsidineae and Halimedineae. This concept was supported by early molecular phylogenetic analyses based on rRNA sequence data, but subsequent cladistic analyses of morphological characters inferred monophyly in only the Halimedineae. These conflicting results prompted the current analysis of 32 taxa from this diverse group of green algae based on plastid‐encoded RUBISCO large subunit (rbcL) gene sequences. Results of these analyses suggested that the Halimedineae and Bryopsidineae are distinct monophyletic lineages. The families Bryopsidaceae, Caulerpaceae, Codiaceae, Derbesiaceae, and Halimediaceae were inferred as monophyletic, however the Udoteaceae was inferred as non‐monophyletic. The phylogenetic position of two taxa with uncertain subordinal affinity, Dichotomosiphon tuberosus Lawson and Pseudocodium floridanum Dawes & Mathieson, were also inferred. Pseudocodium was consistently placed within the halimedinean clade suggesting its inclusion into this suborder, however familial affinity was not resolved. D. tuberosus was the inferred sister taxon of the Halimedineae based on analyses of rbcL sequence data and thus a possible member of this suborder.  相似文献   

14.
Yamagishiella, based on Pandorina unicocca Rayburn et Starr, is distinguished from Eudorina by its isogamous sexual reproduction, whereas Platydorina exhibits anisogamous sexual reproduction. In the present study, we sequenced the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) genes from five Japanese and North American strains of Y. unicocca (Rayburn et Starr) Nozaki, two Platydorina caudata Kofoid strains, and two strains of Eudorina unicocca G. M. Smith, as well as eight related colonial and unicellular species. Phylogenetic trees were constructed based on these sequence data and on previously published rbcL gene sequences from 23 volvocalean species in order to deduce phylogenetic relationships within the colonial Volvocales, with particular regard to the phylogenetic positions and status of the genera Yamagishiella and Platydorina. Two robust monophyletic groups of the anisogamous/oogamous volvocacean species were resolved in the maximum-parsimony tree as well as in the neighbor-joining distance tree. One of the two groups comprises three species of Volvox section Volvox, whereas the other is composed of other sections of Volvox as well as of all the species of Eudorina and Pleodorina. Platydorina, however, was positioned outside these two monopliyletic groups. Therefore, derivation of the Platydorina lineage may be earlier than that of such anisogamous/oogamous groups, or orgin of “anisogamy with sperm packets” in Platydorina may be independent of sperm packet evolution in Eudorina, Pleodorina, and Volvox. It was also resolved with high bootstrap values that all of the Y. unicocca strains form a monophyletic group positioned outside the large monophyletic group including Eudorina and Pleodorina. These reject the possibility of the reverse evolution of isogamy from anisogamy to give rise to Yamagishiella within the lineage of Eudorina.  相似文献   

15.
The enormous species diversity of diatoms correlates with the remarkable range of cell sizes in this group. Nuclear DNA content relates fundamentally to cell volume in other eukaryotic cells. The relationship of cell volume to G1 DNA content was determined among selected members of the genus Thalassiosira, one of the most species‐rich and well‐studied centric diatom genera. Both minimum and maximum species‐specific cell volume correlated positively with G1 DNA content. Phylogeny based on 5.8 S and ITS rDNA sequences indicated that multiple changes in G1 DNA content and cell volume occurred in Thalassiosira evolution, leading to a 1,000‐fold range in both parameters in the group. Within the Thalassiosira weissflogii (Grunow) G. A. Fryxell et Grunow species complex, G1 DNA content varied 3‐fold: differences related to geographic origin and time since isolation; doubling and tripling of G1 DNA content occurred since isolation in certain T. weissflogii isolates; and subcultures of T. weissflogii CCMP 1336 diverged in DNA content by 50% within 7 years of separation. Actin, β‐tubulin, and Spo11/TopVIA genes were selected for quantitative PCR estimation of haploid genome size in subclones of selected T. weissflogii isolates because they occur only once in the T. pseudonana Hasle et Heimdal genome. Comparison of haploid genome size estimates with G1 DNA content suggested that the most recent T. weissflogii isolate was diploid, whereas other T. weissflogii isolates appeared to be polyploid and/or aneuploid. Aberrant meiotic and mitotic cell divisions were observed, which might relate to polyploidization. The structural flexibility of diatom genomes has important implications for their evolutionary diversification and stability during laboratory maintenance.  相似文献   

16.
17.
Sargassum C. Agardh (1820) is a taxonomically difficult genus distributed worldwide and reported as the most species‐rich genus of the Fucales. It is especially abundant in the Pacific where decreasing species richness is reported to occur from west to east. New Caledonia has been recognized as one of the hotspots of Sargassum diversity; however, species lists available for this region are old and incomplete and have not yet been updated with regard to the latest taxonomic revisions published. This study aimed at revising Sargassum diversity in New Caledonia and to assess its geographic affinities with neighboring Pacific regions. We used combined morphological and DNA analyses on new collections and examined numerous type specimens. Although 45 taxa have been listed in the literature, most of them have been either transferred to synonymy since or misidentified, and in this study, only 12 taxa were recognized as occurring in New Caledonia. They belong to the subgenus Sargassum sect. Binderianae (Grunow) Mattio et Payri (2), sect. Ilicifoliae (J. Agardh) Mattio et Payri (2), sect. Polycystae Mattio et Payri. (1), sect. Sargassum (4), sect. Zygocarpicae (J. Agardh) Setch. (2), and subgenus Phyllotrichia (Aresh.) J. Agardh (1). New Caledonian Sargassum flora appeared as the second richest in the region after the Pacific coast of Australia, with which it has shown high similarity, and shared species with all neighboring regions. One species, S. turbinarioides Grunow, is considered as endemic to New Caledonia. The low genetic diversity detected among several polymorphic species belonging to sect. Sargassum is also discussed.  相似文献   

18.
Thalli of Ulva reticulata Forskaal, Ulva rigida C. Ag., and Ulva pulchra Jaasund were incubated at different concentrations of dissolved CO2. Incubation at a high CO2 concentration resulted in decreased oxygen evolution rate and lower affinity for inorganic carbon at high pH conditions, i.e. the ability to use HCO3 as a carbon source was reduced. This effect was reversible, and plants regained this HCO3 uptake capacity when transferred to air concentrations of CO2. The phytosynthetic oxygen evolution rate of plants grown at high CO2 concentration was reduced by high O2 concentrations, whereas thalli and protoplasts from cultures grown at air concentration were not affected. This is interpreted as a deactivation of the carbon-concentrating mechanism during conditions of high CO2 resulting in high photorespiration when plants are exposed to high O2 concentrations. Protoplasts were not affected by high O2 to the same extent and were not able to utilize HCO3 from the medium. The algae were able to grow at very low CO2 concentrations, but growth was suppressed when an inhibitor of external carbonic anhydrase was present. Assay of carbonic anhydrase activities showed that external and internal CA activities were lower in plants grown at a high CO2 concentration compared to plants grown at a low concentration of CO2. Possible mechanisms for HCO3 utilization in these Ulva species are discussed.  相似文献   

19.
对疣螈属Yaotriton亚属5个已知物种23个个体的mtDNA序列数据(ND2、tRNATrp、tRNAAla、tRNAAsn、tRNACys和tRNA Tyr,1421bp),使用贝叶斯(BI)和最大似然(M P)方法重建了疣螈属Yaotriton的系统发育关系。结果表明:1)Yaotriton亚属的所有物种形成1个单元群;2)海南疣螈T.hainanensis是Yaotriton亚属的1有效物种,不是细痣疣螈T.asperrimus的同物异名;3)文县疣螈T.wenxianensis雷山种群应是细痣疣螈的地理种群,细痣疣螈绥阳种群应是文县疣螈的地理种群;4)6个文县疣螈地理种群和3个细痣疣螈地理种群分别形成单系群,文县疣螈是Yaotriton亚属的1有效物种。  相似文献   

20.
研究了露螽属4种昆虫线粒体细胞色素b基因(Cyt b)的部分序列,分析了核苷酸序列组成与变异及氨基酸差异.在得到的432bp序列中,A T约占66.9%,其中102个核苷酸位点发生了变异(约23.8%),从每个氨基酸密码子来看,第3位点的A T含量较高,为79.7%.Cyt b基因编码的144个氨基酸由19种氨基酸组成,有12个发生了变异,占氨基酸总数的8.33%,其中亮氨酸(Leu)与苯丙氨酸(Phe)的含量较高,谷氨酸(Glu)、赖氨酸(Lys)与精氨酸(Arg)的含量较低,无半胱氨酸(Cys).以日本纺织娘和中华螽斯为外群构建的NJ分子系统树显示,镰尾露螽与齿尾露螽是分化较晚的类群,其次是瘦露螽,黑角露螽是分化较早的类群.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号