首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
设G(V,E)是简单图,k是正整数.从V(G)∪E(G)到{1,2,…,k}的映射f被称作G的邻点可区别-点边全染色,当且仅当:■uv∈E(G),f(u)≠f(uv),f(v)≠f(uv),■uv∈E(G),C(u)≠C(v),且称最小的数k为G的邻点可区别-点边全色数.其中C(u)={f(u)}∪{f(uv)|uv∈E(G)},研究了一些联图的邻点可区别-点边全染色法,得到了它们的色数.  相似文献   

2.
设G(V,E)是简单连通图,k是正整数,若V∪到{1,2,3,…,k}的映射f满足对任意uv∈E(G),有f(U)≠f(v),f(u)≠f(uv)f(v)≠f(uv),且C(u)≠C(v),其中C(u):{f(u)}∪{f(uv)|uv∈E(G)}.那么称f为G的k-邻点可区别的E-全染色(简记为k-AVDETC),并称X_(at)~e(G)=min{k|G有k-邻点可区别的E-全染色}为G的邻点可区别的E-全色数.本文讨论了路、圈、扇、星、轮及完全图的Mycielski图的邻点可区别E-全染色,得到了该类图的邻点可区别的E-全色数.  相似文献   

3.
对简单图G(V,E),设f是从E(G)到{1,2,…,κ}的映射,κ为自然数,如果f满足:1)对任意的uv,uw∈E(G),v≠w,有f(uv)≠f(uw);2)对任意的u,v∈V(G),u≠v,有C(u)≠C(v).则称f为图G的κ-点可区别边染色法,而最小的κ被称为点可区别边色数(其中C(u)={f(uv)|uv∈E(G)}).研究了图K_(2n)\E(K_(2,m))(n≥9,m≥3)的点可区别边色数.  相似文献   

4.
设G是简单图,图G的一个k-点可区别Ⅳ-全染色(简记为k-VDIVT染色)f是指一个从V(G)UE(G)到{1,2,…,k}的映射,满足:uv,uw∈E(G),v≠w,有f(uv)≠f(uw);u,v∈V(G),u≠v,有C(u)≠G(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.数min{k|G有一个k-VDIVT染色}称为图的点可区别Ⅳ-全色数,记为χ_(vt)(iv)(G).本文给出了双星S_(2n),轮W_n和扇F_n的点可区别Ⅳ-全色数.  相似文献   

5.
最大度不小于5的外平面图的邻强边染色   总被引:5,自引:0,他引:5  
图G(V,E)的一k-正常边染色叫做k-邻强边染色当且仅当对任意uv∈E(G)有,f[u]≠f[v],其中f[u]={f(uw)|uw∈E(G)},f(uw)表示边uw的染色.并且x'as(G)=min{k|存在k-图G的邻强边染色}叫做图G的图的邻强边色数.本文证明了对最大度不小于5的外平面图有△≤x'as(G)≤△ 1,且x'as(G)=△ 1当且仅当存在相邻的最大度点.  相似文献   

6.
联图Fn∨Pm的邻点可区别全染色   总被引:6,自引:0,他引:6  
设G(V,E)是阶数至少为2的简单连通图,k是正整数,V∪E到{1,2,3,…k}的映射f满足:对任意uv,uw∈E(G),u≠w,有f(uv)≠f(vw);对任意uv∈E(G),有f(u)≠f(v), f(u)≠f(uv),f(v)≠f(uv);那么称f为G的k-正常全染色,若f还满足对任意uv∈E(G),有G(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G),v∈V(G)}那么称f为G的k-邻点可区别的全染色(简记为k-AVDTC),称min{k|G有k-邻点可区别的全染色}为G的邻点可区别的全色数,记作Xat(G).本文得到了联图Fn∨Pm的全色数.  相似文献   

7.
设G(V,E)是阶数至少是3的简单连通图,若f是图G的k-正常边染色,使得对任意的uv∈E(G),C(u)≠C(v),那么称f是图G的k-邻点可区别边染色(k-ASEC),其中C(u)={f(uw)│uw∈E(G)},而χa′s(G)=min{k│存在G的一个k-ASEC},称为G的邻点可区别边色数.本文给出扇的倍图D(Fm)的邻点可区别边色数.  相似文献   

8.
G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k}的映射.如果(V)u,v∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.给出了轮与路间的多重联图的邻点可区别E-全色数,其中C(u)={f(u)}∪ {f(uv)|uv∈E(G)}.  相似文献   

9.
对简单图G(V,E),f是从V(G)∪E(G)到{1,2,…,k}的映射,k是自然数,若满足:1)uv,uω-∈E(G),v≠,-ωf(uv)≠f (uω-);2)uv∈E G,C(u)≠C(v).则称f是G的点关联邻点可区别全染色法,其所用到的最少颜色数称为图G的点关联邻点可区别全色数.这里C(u)=f(u)∪f(uv)uv∈E(G).得到了扇和轮的倍图的点关联邻点可区别全色数.  相似文献   

10.
Pm×Kn的邻点可区别全色数   总被引:6,自引:0,他引:6  
设G是简单图.设f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令C_f(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}.如果f是k-正常全染色,且对任意u,v∈V(G),uv∈E(G),有C_f(u)≠C_f(v),那么称f为图G的邻点可区别全染色(简称为k-AVDTC).数x_(at)(G)=min{k|G有k-AVDTC}称为图G的邻点可区别全色数.本文给出路P_m和完全图K_n的Cartesion积的邻点可区别全色数.  相似文献   

11.
Halin-图的邻强边染色   总被引:5,自引:0,他引:5  
图G(V,E)的正常κ-边染色f叫做图G(V,E)的κ-邻强边染色当且仅当任意uv∈E(G)满足f[u]≠f[v],其中,f[u]={f(uw)|uw∈E(G)},称f是G的κ-临强边染色,简记为κ-ASEC.并且x′as(G)=min{k|κ-ASEC of G}叫做G(V,E)的邻强边色数.本文研究了△(G)≥5的Halin-图的邻强边色数.  相似文献   

12.
对简单图G(V,E),f是从V(G)∪E(G)到{1,2,…,k}的映射,k是自然数,若f满足(1)uv,uw∈E(G),u≠w,f(uv)≠f(uw);(2)uv∈E(G),C(u)≠C(v).则称f是G的一个邻强边染色,最小的k称为邻强边色数,其中C(u)={f(uv)|uv∈E(G)}.给出了一类3-正则重圈图的邻强边色数.  相似文献   

13.
对阶至少为3的简单连通图G的k-正常边染色法f,若对任意uv∈E(G)有C(u)≠C(v),Ei-Ej 1,i,j=1,2,…,k.其中C(u)={f(uv)uv∈E(G)},Ei={uv f(uv)=i,uv∈E(G)},则称f为G的一k-均匀邻强边染色,简称k-EASEC.并称χe′as(G)=min{k k-EASEC of G}为G的均匀邻强边色数.给出了图Pn2与Pnn-1的均匀邻强边色数.  相似文献   

14.
一类多重联图的邻点可区别E-全染色   总被引:1,自引:0,他引:1  
设G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k].的映射.如果Au,v∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u))U{f(uv)|uv∈E(G)).称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别B全色数.本文给出了星、路、圈间的多重联图的邻点可区别E-全色数.  相似文献   

15.
图G的一个k-正常边染色f被称为点可区别边染色是指任何两点的点及其关联边的色集合不同,所用最小的正整数k被称为G的点可区别边色数,记为x′_(vd)(G).用K_(2n)-E(C_4)表示2n阶完全图删去其中一条4阶路的边后得到的图,文中得到了K_(2n)-E(_4)的点可区别边色数.  相似文献   

16.
图G的一个k-正常着色满足相邻的点所关联的边的色集合不同,且任两色的边数之差不超过1称为G的k-邻强均匀边染色,图G邻强均匀边染色中最小的k称为图G的邻强均匀边色数.本文得到了P_m×P_n的邻强均匀边色数.  相似文献   

17.
图的一个边正常的全染色满足相邻点的色集合不同时被称为邻点可区别Ⅵ-全染色,把所用的最少颜色数称为邻点可区别Ⅵ-全色数,其中任意一点的色集合为点上与关联边所染的颜色构成的集合.应用构造邻点可区别Ⅵ-全染色函数法得到了路、圈、星和扇的倍图的邻点可区别Ⅵ-全色数,进一步验证图的邻点可区别Ⅵ-全染色猜想.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号