首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
介绍预应力钢绞线用AG80Cr热轧盘条的生产工艺。给出工艺控制要点:精炼时间不小于42 min;白渣保持时间不低于15 min;过热度控制在30℃以下;拉速2.1~2.3 m/min,拉速尽可能保持稳定;均热温度1 060~1 120℃;开轧温度940~1 000℃;减定径入口温度880~920℃;吐丝温度870~910℃;辊道速度35~41 m/min。该工艺生产的预应力钢绞线用AG80Cr热轧盘条可满足用户的使用要求。  相似文献   

2.
李涛  姜洪刚  吕建勋  荆高扬 《金属制品》2015,41(2):41-43,51
介绍SWRH82A+Cr热轧盘条的化学成分设计和生产工艺路线。生产工艺控制过程中,转炉终点控制w(C)≥0.50%,出钢时间控制在5~7 min;LF炉精炼过程中控制软吹氩时间不小于15 min,精炼总周期控制在75min左右;连铸过程中控制钢水过热度在30℃以下;轧制过程中控制开轧温度(1 020±20)℃,吐丝温度(890±20)℃,风冷辊道速度0.8 m/s,冷却速率16℃/s。盘条显微组织为S+P+少量渗碳体,晶粒度为8.0级,索氏体体积分数在85%以上,抗拉强度控制在1 196~1 221 MPa,断面收缩率和断后伸长率分别控制在39%~42%和13.5%~16.5%,产品质量满足客户要求。  相似文献   

3.
SWRH82B高碳钢盘条生产实践   总被引:1,自引:1,他引:0  
SWRH82B高碳钢盘条主要用于制作高强度低松弛预应力钢丝和钢绞线。采用长短复合流程,优化化学成分,LF炉精炼时间不小于45 min,白渣保持时间不小于15 min;连铸结晶器电磁搅拌频率5 Hz,电流246 A,拉速2.1~2.3 m/min,过热度小于30℃,比水量0.7~0.85 L/kg;轧制温度1 050~1 100℃,开轧温度950~990℃,减定径轧制及吐丝温度880~900℃,辊道速度40~60 m/min。生产的预应力钢绞线用SWRH82B高碳钢盘条,抗拉强度大于1 150 MPa,断面收缩率大于35%,夹杂物的尺寸小于20μm,数量小于6个/mm2,w(N)≤70×10-6,w(O)≤40×10-6,完全满足1 860 MPa级以上钢绞线用盘条的需要。  相似文献   

4.
ER 50-6焊接用热轧盘条的研制   总被引:1,自引:1,他引:0  
介绍ER50-6焊接用热轧盘条研制过程:合理控制盘条化学成分;冶炼过程控制出钢温度1 620~1 650℃;连铸时控制过热度15~35℃,正常拉速2.2~2.6 m/min;轧制时控制加热温度990~1 050℃;控冷时控制吐丝温度820~850℃,辊道入口速度7 m/min,以及0.45℃/s的冷却速度。生产的Φ5.5 mmER50-6盘条不经退火处理可直接拉拔成Φ1.0 mm的焊丝半成品,成品焊丝焊接性能良好,飞溅少,焊缝平整美观,质量稳定可靠,满足用户要求。  相似文献   

5.
《金属制品》2017,(4):23-28
60Si2MnA弹簧钢必须具有良好的冶金质量、表面质量、金相组织、尺寸精度。介绍了弹簧钢盘条生产工艺,转炉冶炼过程中,平均出钢w(C)≥0.12%;LF精炼过程中,炉渣碱度控制在1.5~2.5;VD真空脱气过程中,总真空时间≥20 min;连铸过程中,控制过热度20~30℃,拉速控制1.6~1.9 m/min,堆冷时间不少于24 h;给出加热炉工艺控制参数;减定径温度控制≤880℃,吐丝温度≤860℃,辊道速度0.16~0.30 m/s。对盘条进行分析,结果表明:夹杂物主要以B类、D类为主,夹杂物级别≤1.5级,脱碳层深度≤1.0%D,各项性能指标均达到用户生产油淬火回火弹簧钢丝的要求。  相似文献   

6.
《金属制品》2016,(5):42-46
介绍宝钢SCM440盘条生产工艺及质量控制水平。连铸钢包过热度控制在30℃以内,拉速0.5~0.7 m/min;高线出炉温度1 030~1 070℃,吐丝温度810~860℃,冷却段辊道速度小于0.8 m/min。生产的SCM440盘条,元素成分波动范围小,N、O含量低,B类及D类夹杂物平均为0.69、0.53级,钢质纯净;抗拉强度880~1 080 MPa、断面收缩率28%~40%、脱碳层深度在0.8%D以下。结果表明,SCM440盘条具有较好的表面质量和优良的综合力学性能,能够满足12.9级紧固件技术要求。  相似文献   

7.
张德勇  牛治凯  王博  李伟  祁敏翔 《金属制品》2021,47(3):29-31,43
介绍了高强钢丝用SWRH82A热轧盘条冶炼及轧制生产工艺,冶炼过程中转炉采用高拉补吹操作,严控终点高碳含量,LF炉精炼过程中控制软吹氩时间不小于15 min,连铸过程中采用低过热度恒速保护浇铸,结晶器末端使用电磁搅拌;轧制中精轧入口温度(900±20)℃,吐丝温度860~890℃.生产的盘条索氏体体积分数85%以上,抗...  相似文献   

8.
热轧含有一定量Si、Ni、Cr等元素的低碳耐蚀特种焊接用盘条,经高温长时间加热,导致Ni、Cr等元素在氧化铁皮与基体界面的一侧富集,使表面氧化铁皮呈网状或嵌入基体。通过CCT曲线分析,在不改变盘条金相组织的前提下,控制加热温度1 040℃,加热时间50 min,并打破焊接用钢传统缓冷工艺模式,提高盘条在斯太尔摩风冷线冷却速率,使氧化铁皮嵌入基体的深度降低4~8μm,满足用户机械剥壳+在线电解酸洗去除氧化铁皮的要求。  相似文献   

9.
介绍LX72A帘线钢盘条开发过程。通过改良LF炉精炼渣系及优化连铸二冷参数等工艺手段,有效降低钢水中的夹杂物含量,缓解连铸方坯的碳偏析;在轧制过程中,通过优化加热炉的空燃比,以弱还原性气氛缓解方坯表面脱碳现象,使盘条表面局部总脱碳层厚度小于0.05 mm,采用开轧温度960~1 000℃,入精轧温度850~880℃,吐丝温度880~910℃,辊道速度0.95 m/s的轧制工艺,使盘条索氏体化率超过85%。生产的5.5 mm热轧盘条抗拉强度为1 040~1 100 MPa,伸长率不小于15%,断面收缩率大于44%,其综合质量通过了贝卡尔特测评机构的专业测评,盘条顺利拉拔至0.22 mm,经捻制合股后完全满足钢帘线使用要求。  相似文献   

10.
为使预应力钢丝及钢绞线用热轧盘条更适用于后期深加工,满足终端产品性能指标要求,在充分考虑环境温度对产品质量影响的基础上,对化学成分设计、轧制工艺控制、组织性能控制及盘条表面质量、外形尺寸等关键生产控制环节进行分析。结果表明,对C、Mn、Cr等强化合金元素含量进行合理设定;盘条表面缺陷深度控制在0.1mm以下;开轧温度控制在1 000~1 040℃;索氏体化率控制在1.5级以上,索氏体片层间距在0.18~0.25μm;盘条表面无严重划伤、结疤及耳子等缺陷,最终得到综合性能优良的预应力热轧盘条。  相似文献   

11.
孙浩然  苗铁岭 《金属制品》2010,36(1):59-62,66
介绍冷镦标准件用热轧盘条SCM435的生产工艺及过程控制。100 t转炉出钢温度控制在1 620~1 650℃;100 t LF精炼炉出钢温度控制在1 555~1 565℃;由六机六流小方坯连铸机铸成150 mm×150 mm方坯,经步进梁式加热炉进入高线机组轧制,其中水冷控制保证盘条的吐丝温度为800~840℃。经检验,Φ12 mm SCM435热轧盘条的平均屈服强度为465 MPa,平均抗拉强度为705 MPa,平均面缩率56%,1/2冷顶锻合格率达100%,可满足高端用户实际生产需求。  相似文献   

12.
介绍ML20MnTiB冷镦钢盘条开发过程。采取控制C,P,Si,Al,Ti等含量;出钢温度1 620~1 650℃,钢水过热度25~30℃,连铸拉速2.4~2.6 m/min;轧制加热温度(980±50)℃,均热温度(1 060±20)℃,开轧温度(950±20)℃,精轧温度850~900℃,减定径温度800~850℃,吐丝温度780~820℃等措施,生产的ML20MnTiB盘条金相组织均为等轴铁素体+珠光体,晶粒度9.0~10.5级,铁素体脱碳层深度小于0.03 mm,夹杂物小于0.5级,同圈性能均匀,冷镦无裂纹,满足生产10.9级螺栓技术要求。  相似文献   

13.
分别采用轧制坯和连铸坯生产φ16 mm ML40Cr冷镦钢盘条,连铸坯盘条冷镦后试样全部合格,轧制坯盘条经1/4冷镦后1个试样出现斜裂纹。对2种坯料生产的盘条夹杂物进行分析,夹杂物级别相对较低且相差不大;连铸坯和轧制坯盘条金相组织均为珠光体+铁素体;晶粒度均为9.5~10级,分布均匀;连铸坯生产的16 mmML40Cr盘条带状组织为3级,存在较轻微的枝晶组织,轧制坯生产的盘条带状组织为2.5级,盘条中存在较明显的方框形偏析。分析表明:连铸坯中的方框形偏析经加热、轧制后难以消除,盘条中晶粒细小,使得钢的变形抗力增大,增加了盘条的开裂倾向。  相似文献   

14.
付国平  戈春刚 《金属制品》2010,36(4):64-66,70
根据10B33冷镦盘条对化学成分、力学性能、表面质量、冷顶锻检验等方面的要求,通过控制轧制坯料的质量、轧制压下量、轧制孔型等提高盘条表面质量。采用控轧控制工艺生产10B33冷镦盘条:粗轧开轧温度约为950℃,轧件进精轧机温度为920℃,吐丝温度为900℃,斯太尔摩控冷线控制冷却。成品10B33冷镦钢盘条组织为铁素体+珠光体,晶粒度9.5~10级,脱碳层深度≤0.01 mm;屈服强度360~400 MPa,抗拉强度595~650 MPa;冷镦检验全部合格。  相似文献   

15.
10B21高强度冷镦钢盘条的生产   总被引:1,自引:1,他引:0  
介绍用于生产10.9级高强度标准件的Φ6.5mm10B21冷镦钢盘条的生产工艺。通过在冶炼过程中严格控制钢中N和O的含量,稳定B的吸收率,提高淬透性;在精炼过程中全程控铝,一次喂线;连铸过程中过热度偏高20~30℃,提高铸坯质量;以及轧制过程中采用冷速为0.3~1℃/s的控冷工艺,加热温度950~1000℃,吐丝温度850~860℃,用高线机组成功生产出合格的10B21冷镦钢盘条,产品各项指标满足要求。  相似文献   

16.
控冷工艺对ML20MnTiB冷镦性能的影响   总被引:2,自引:2,他引:0  
用ML20MnTiB替代ML40Cr作为冷镦钢盘条,以减少冷镦前退火处理工序。介绍ML20MnTiB盘条化学成分及轧制工艺流程,斯太尔摩线长度104m,盘条在斯太尔摩线上的运行时间由290s提高到373s,在保温罩内的运行时间由179 s增加到271s,在保温罩内的平均冷却速度由0.44℃/s降到0.38℃/s。工艺调整后,盘条屈服强度和抗拉强度均降低约30~40 MPa,组织全部为铁素体加珠光体,心部不存在粒状贝氏体,心部晶粒度由8.5级增大到7.5级,1/3冷镦合格率由原来的75%提高到100%。  相似文献   

17.
铬对60Si2 MnA盘条组织和力学性能的影响   总被引:2,自引:2,他引:0  
卢胜军  陈亮  霍琳  王淼 《金属制品》2009,35(3):26-27
在同一工艺下分别轧制不加铬(A)和加铬(B)两类盘条,分析铬对悬架簧用60Si2MnA盘条脱碳层和力学性能的影响。结果表明,当加热炉预热段温度为670~680℃,加热段温度为950~960℃,均热段温度为1 035~1 050℃,开轧温度为900~915℃,吐丝温度为850~860℃,轨道速度为1.0 m/s,尾气残氧质量分数控制在3%左右时,B类盘条的全脱碳层深度和总脱碳层深度较A类盘条明显降低,B类盘条的抗拉强度和断面收缩率较A类盘条高。  相似文献   

18.
ML20MnTiB高强度冷镦钢线材的研制与开发   总被引:3,自引:2,他引:1  
范银平 《金属制品》2009,35(1):41-43
紧固件制造要求ML20MnTiB冷镦钢线材提高冷加工性能、淬透性和综合力学性能。安钢采用100 t转炉—LF精炼—150 mm×150 mm连铸小方坯—高速线材生产线,研制开发出ML20MnTiB高强度冷镦钢线材,主要化学成分如下:w(C)为0.19%~0.22%,w(Si)为0.08%~0.20%,w(Mn)为1.40%~1.55%,w(Ti)为0.04%~0.06%,w(B)为0.000 5%~0.002 5%。冶炼过程中控制硼不被氧化和氮化,轧制过程中开轧温度为(950±30)℃;精轧温度为(870±20)℃;减定径温度为(830±20)℃,吐丝温度为(800±20)℃,入口辊道速度为12~18m/min。生产实践表明:产品综合性能稳定,各项技术指标达到用户制作10.9级高强度螺栓的要求。  相似文献   

19.
冷镦钢ML35盘条的开发   总被引:1,自引:0,他引:1  
介绍高强度标准件用ML35钢盘条的开发与生产过程。通过对ML35钢盘条的成分和轧制工艺进行调整,采用加热段920~980℃,均热段980~1040℃,开轧温度920~980℃,斯太尔摩辊道入口速度12m/min,出口速度24m/min,延迟冷却方式,可得到综合性能均能满足用户要求的冷镦钢盘条。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号