首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Control of the carrier type in 2D materials is critical for realizing complementary logic computation. Carrier type control in WSe2 field‐effect transistors (FETs) is presented via thickness engineering and solid‐state oxide doping, which are compatible with state‐of‐the‐art integrated circuit (IC) processing. It is found that the carrier type of WSe2 FETs evolves with its thickness, namely, p‐type (<4 nm), ambipolar (≈6 nm), and n‐type (>15 nm). This layer‐dependent carrier type can be understood as a result of drastic change of the band edge of WSe2 as a function of the thickness and their band offsets to the metal contacts. The strong carrier type tuning by solid‐state oxide doping is also demonstrated, in which ambipolar characteristics of WSe2 FETs are converted into pure p‐type, and the field‐effect hole mobility is enhanced by two orders of magnitude. The studies not only provide IC‐compatible processing method to control the carrier type in 2D semiconductor, but also enable to build functional devices, such as, a tunable diode formed with an asymmetrical‐thick WSe2 flake for fast photodetectors.  相似文献   

2.
High‐performance, air‐stable, p‐channel WSe2 top‐gate field‐effect transistors (FETs) using a bilayer gate dielectric composed of high‐ and low‐k dielectrics are reported. Using only a high‐k Al2O3 as the top‐gate dielectric generally degrades the electrical properties of p‐channel WSe2, therefore, a thin fluoropolymer (Cytop) as a buffer layer to protect the 2D channel from high‐k oxide forming is deposited. As a result, a top‐gate‐patterned 2D WSe2 FET is realized. The top‐gate p‐channel WSe2 FET demonstrates a high hole mobility of 100 cm2­ V?1 s?1 and a ION/IOFF ratio > 107 at low gate voltages (VGS ca. ?4 V) and a drain voltage (VDS) of ?1 V on a glass substrate. Furthermore, the top‐gate FET shows a very good stability in ambient air with a relative humidity of 45% for 7 days after device fabrication. Our approach of creating a high‐k oxide/low‐k organic bilayer dielectric is advantageous over single‐layer high‐k dielectrics for top‐gate p‐channel WSe2 FETs, which will lead the way toward future electronic nanodevices and their integration.  相似文献   

3.
2D semiconductors are promising for fabricating miniaturized and flexible electronic devices. The manipulation of polarities in 2D semiconductors is key to fabricate functional devices and circuits. However, the switchable and reversible control of polarity in 2D semiconductors is challenging due to their ultrathin body. Herein, a reversible and non-destructive method is developed to dope 2D semiconductors by using ionic 2D minerals as the electrostatic gating. The 2D semiconductor channel can be reversibly transformed between n+ and p+ types with carrier concentrations of 1.59 × 1013 and 6.82 × 1012 cm−2, respectively. With the ability to in situ control carrier type and concentration in 2D semiconductors by ionic gating, a reversible PN/NP junction and programmable logic gate are demonstrated in such devices. This 2D mineral materials-based ionic doping approach provides an alternative method for achieving multi-functional and complex circuits in an all-2D material flatform.  相似文献   

4.
5.
2D metals have attracted considerable recent attention for their special physical properties, such as charge density waves, magnetism, and superconductivity. However, despite some recent efforts, the synthesis of ultrathin 2D metals nanosheets down to monolayer thickness remains a significant challenge. Herein, by using atomically flat 2D WSe2 or WS2 as the growth substrate, the synthesis of atomically thin 2D metallic MTe2 (M = V, Nb, Ta) single crystals with the thickness down to the monolayer regime and the creation of atomically thin MTe2/WSe2 (WS2) vertical heterojunctions is reported. Comparison with the growth on the SiO2/Si substrate under the same conditions reveals that the utilization of the dangling‐bond‐free WSe2 or WS2 as the van der Waals epitaxy substrates is crucial for the successful realization of atomically thin MTe2 (M = V, Nb, Ta) nanosheets. It is further shown that the epitaxial grown 2D metals can function as van der Waals contacts for 2D semiconductors with little interface damage and improved electronic performance. This study defines a robust van der Waals epitaxy pathway to ultrathin 2D metals, which is essential for fundamental studies and potential technological applications of this new class of materials at the 2D limit.  相似文献   

6.
Carrier doping is the basis of the modern semiconductor industry. Great efforts are put into the control of carrier doping for 2D semiconductors, especially the layered transition metal dichalcogenides. Here, the direct laser patterning of WSe2 devices via light-induced hole doping is systematically studied. By changing the laser power, scan speed, and the number of irradiation times, different levels of hole doping can be achieved in the pristine electron-transport-dominated WSe2, without obvious sample thinning. Scanning transmission electron microscopy characterization reveals that the oxidation of the laser-radiated WSe2 is the origin of the carrier doping. Photocurrent mapping shows that after the same amount of laser irradiation, with increasing thickness, the laser patterned PN junction changes from the pure lateral to the vertical-lateral hybrid structure, accompanied by the decrease in the open circuit voltage. The vertical-lateral hybrid PN junction can be tuned to a pure lateral one by further irradiation, showing possibilities to construct complex junction profiles. Moreover, a NOR gate circuit is demonstrated by direct patterning of p-doped channels using laser irradiation without introducing passive layers and metal electrodes with different work functions. This method simplifies device fabrication procedures and shows a promising future in large scale logic circuit applications.  相似文献   

7.
Semiconducting molybdenum ditelluride (2H‐MoTe2), a fast‐emerging 2D material with an appropriate band gap and decent carrier mobility, is configured as field‐effect transistors and is the focus of substantial research interest, showing hole‐dominated ambipolar characteristics. Here, carrier modulation of ambipolar few‐layer MoTe2 transistors is demonstrated utilizing magnesium oxide (MgO) surface charge transfer doping. By carefully adjusting the thickness of MgO film and the number of MoTe2 layers, the carrier polarity of MoTe2 transistors from p‐type to n‐type can be reversely controlled. The electron mobility of MoTe2 is significantly enhanced from 0.1 to 20 cm2 V?1 s?1 after 37 nm MgO film doping, indicating a greatly improved electron transport. The effective carrier modulation enables to achieve high‐performance complementary inverters with high DC gain of >25 and photodetectors based on few‐layer MoTe2 flakes. The results present an important advance toward the realization of electronic and optoelectronic devices based on 2D transition‐metal dichalcogenide semiconductors.  相似文献   

8.
In this report, we experimentally investigate nonlinearity of PIN photodiode as a function of incident light power with different bias. It is found that the nonlinearity can be related with effective resistance of this device itself. According to ambipolar diffusion model, the resistance is divided into two parts, i.e. intrinsic region resistance and series resistance originating from non-Ohmic contact. Forward Current (If)-Voltage(Vf) plots indicate that fabrication of high-quality Ohmic contact is necessary to improve linear performance for PIN photodiodes.  相似文献   

9.
Here an IR-heating chemical vapor deposition (CVD) approach enabling fast 2D-growth of WSe2 thin films is reported, and the great potential of metal contact doping in building CVD-grown WSe2-based lateral homojunction is demonstrated by contacting with TiN/Ni metals in favor of holes/electrons injection. Shortening nanosheet channel to ≈2 µm leads to pronounced enhancement in the performance of diode. The fabricated WSe2-based diode exhibits high rectification ratios without the need of gate modulation and can work efficiently as photovoltaic cell, with maximum open circuit voltage reaching up to 620 mV and a high power conversion efficiency over 15%, empowering it as superb self-powered photodetector for visible to near-infrared lights, with photoresponsivity over 0.5 A W−1 and a fast photoresponse speed of 10 µs under 520 nm illumination. It is of practical significance to achieve well-performed photovoltaic devices with CVD-grown WSe2 using fab-friendly metals and simple processing, which will help pave the way toward future mass production of optoelectronic chips.  相似文献   

10.
In this work, a dual metal (DM) double-gate (DG) Tunnel Field Effect Transistor (DMDG-TFET) with drain-gate underlap is proposed to overcome the challenges in conventional TFET. The ON-current (Ion), OFF-current (Ioff), Ion/Ioff ratio, subthreshold swing (SS) and ambipolar current (Iambi) of the proposed device with drain underlap are investigated as gate length is scaled (LGATE) down. The proposed device gives a better suppression in leakage current and low ambipolar current. The suppressed leakage current (Ioff) and ambipolar current (Iambi) are 9.49 × 10−14 A/µm and 1.95 × 10−12 A/µm respectively for a gate length (LGATE) of 36 nm and a channel length (LCh) of 50 nm for a supply voltage of 0.5 V. Excellent switching behavior is achieved when gate length (LGATE) is 72% of the channel length (LCh). The proposed architecture is suitable for low power applications.  相似文献   

11.
二硒化钨(WSe2)具有双极导电特性,可以通过外界掺杂或改变源漏金属来调节载流子传输类型,是一类特殊的二维纳米材料,有望在未来集成电路中成为硅(Si)的替代材料.文章采用理论与实验相结合的方式系统分析了 WSe2场效应晶体管中的源漏接触特性对器件导电类型及载流子传输特性的影响,通过制备不同金属作为源漏接触电极的WSe2场效应晶体管,发现金属/WSe2接触的实际肖特基接触势垒高低极大地影响了晶体管的开态电流.源漏金属/WSe2接触特性不仅取决于接触前理想的费米能级差,还受到界面特性,特别是费米能级钉扎效应的影响.  相似文献   

12.
Scalable substitutional doping of 2D transition metal dichalcogenides is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, scalable growth and vanadium (V) doping of 2D WSe2 at front-end-of-line and back-end-of-line compatible temperatures of 800 and 400 °C, respectively, is reported. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results in p-type doping via the introduction of discrete defect levels that lie close to the valence band maxima. The p-type nature of the V dopants is further verified by constructed field-effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, this study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic-grade wafer-scale extrinsic 2D semiconductors.  相似文献   

13.
The transitionmetal dichalcogenides‐based phototransistors have demonstrated high transport mobility but are limited to poor photoresponse, which greatly blocks their applications in optoelectronic fields. Here, light sensitive PbS colloidal quantum dots (QDs) combined with 2D WSe2 to develop hybrid QDs/2D‐WSe2 phototransistors for high performance and broadband photodetection are utilized. The device shows a responsivity up to 2 × 105 A W–1, which is orders of magnitude higher than the counterpart of individual material‐based devices. The detection spectra of hybrid devices can be extended to near infrared similar to QDs' response. The high performance of hybrid 0D‐2D phototransistor is ascribed to the synergistic function of photogating effect. PbS QDs can efficiently absorb the input illumination and 2D WSe2 supports a transport expressway for injected photocarriers. The hybrid phototransistors obtain a specific detectivity over 1013 Jones in both ON and OFF state in contrast to the depleted working state (OFF) for other reported QDs/2D phototransistors. The present device construction strategy, photogating enhanced performance, and robust device working conditions contain high potential for future optoelectronic devices.  相似文献   

14.
High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode   总被引:5,自引:0,他引:5  
There is a inherent tradeoff between the quantum efficiency and bandwidth of conventional PIN photodiodes. In the case of devices based on III-V semiconductors, an absorption region thickness of approximately 2 mu m is required to achieve quantum efficiencies greater than 80%, although this limits the transit-time-limited bandwidth to less than 15 GHz. It has recently been shown that a microcavity photodiode can circumvent this performance tradeoff and achieve both high quantum efficiency and large bandwidths. The fabrication of a microcavity PIN photodiode with a high quantum efficiency near 1.55 mu m is described. An external quantum efficiency of 82% at 1480 nm has been achieved with an InGaAs absorption layer only 2000 AA thick embedded in a resonant cavity grown by metal organic vapor phase epitaxy (MOVPE).<>  相似文献   

15.
Non-destructive and reversible modulations of polarity and carrier concentration in transistors are essential for complementary devices. The fabricated multi-gated WSe2 devices obtain dynamic electrostatic field induced electrically configurable functions and demonstrate as diode with high rectification ratio of 4.1 × 105, as well as n- and p-type inverter with voltage gain of 19.9 and 12.1, respectively. Benefiting from the continuous band alignment induced modulation of channel underneath the dual gates, the devices exhibit high-performance photodetection in wide spectral range. The devices yield high photo-responsivity (5.16 A W−1) and large Ilight/Idark ratio (1 × 105). Besides, the local gate fields accelerate the separation of photo-induced carriers, leading to fast response without persistent current. This strategy takes the advantage of the simplified design and continues to deliver integrated circuits with high density. The superior electrical and photodetection characteristics exhibit great potency in the domain of future optoelectronics.  相似文献   

16.
The recent discoveries of transition‐metal dichalcogenides (TMDs) as novel 2D electronic materials hold great promise to a rich variety of artificial van der Waals (vdWs) heterojunctions and superlattices. Moreover, most of the monolayer TMDs become intrinsically piezoelectric due to the lack of structural centrosymmetry, which offers them a new degree of freedom to interact with external mechanical stimuli. Here, fabrication of flexible vdWs p–n diode by vertically stacking monolayer n‐MoS2 and a few‐layer p‐WSe2 is achieved. Electrical measurement of the junction reveals excellent current rectification behavior with an ideality factor of 1.68 and photovoltaic response is realized. Performance modulation of the photodiode via piezo‐phototronic effect is also demonstrated. The optimized photoresponsivity increases by 86% when introducing a −0.62% compressive strain along MoS2 armchair direction, which originates from realigned energy‐band profile at MoS2/WSe2 interface under strain‐induced piezoelectric polarization charges. This new coupling mode among piezoelectricity, semiconducting, and optical properties in 2D materials provides a new route to strain‐tunable vdWs heterojunctions and may enable the development of novel ultrathin optoelectronics.  相似文献   

17.
The Cross-Track Infrared Sounder (CrIS) program [an instrument on the National Polar-Orbiting Operational Environmental Satellite System (NPOESS)] requires photodiodes with spectral cutoffs denoted by short-wavelength infrared [γc(98 K) ∼5.1 μm], midwavelength infrared [γc(98 K) ∼9.1 μm], and long-wavelength infrared (LWIR) [γc(81 K) ∼15.5 μm]. The CrIS instrument also requires large-area (850-μm-diameter) photodiodes with state-of-art performance. Molecular beam epitaxy (MBE) is used to grow n-type short-wavelength infrared, midwavelength infrared, or LWIR Hg1−xCdxTe on latticematched CdZnTe. Detectors with p-type implants 7 μm in diameter are used to constitute the 850-μm-diameter lateral collection diodes (LCDs). The photodiode architecture is the double-layer planar heterostructure architecture. Quantum efficiency, I-V, Rd-V, and 1/f noise in photovoltaic Hg1−xCdxTe detectors are critical parameters that limit the sensitivity of infrared sounders. These are some of the parameters used to select photodiodes that will be part of the CrIS focal plane module (FPM). During fabrication of the FPM, the photodiodes are subject to a significant amount of handling while transitioning from part of newly processed Hg1–xCdxTe wafers to individual photodiodes mounted in a CrIS FPM ready to be flown on NPOESS. Quantum efficiency, I-V, noise, and visual inspections are performed at several steps in the detector’s journey. Initial I-V and visual inspections are conducted at the wafer level followed by I-V, noise, and quantum efficiency after dicing and mounting the photodiodes in leadless chip carriers (LCCs). A visual inspection is performed following removal of the detectors from the LCCs. Finally, the individual photodiodes are precision mounted on an FPM base, and I-V, noise, quantum efficiency, and visual inspections are performed again. Each step in the FPM fabrication process requires handling and environmental conditioning that can result in detector dark current and noise increase. Some photodiodes on the first flightlike FPMs fabricated exhibited an increase in dark current and noise characteristics at the FPM level as compared to the measurements performed when the photodiodes were in LCCs prior to integration into the FPM. The degradation observed resulted in an investigation to discern the cause of the performance degradation (baking at elevated temperatures, mechanical handling, electrical stress, etc.). This paper outlines the results of the study and the corrective actions that led to the successful manufacture of LWIR large detectors from material growth to insertion into flight FPMs for the CrIS program.  相似文献   

18.
Complementary circuits based on 2D materials show great promise for next‐generation electronics. An ambipolar all‐2D ReSe2 field‐effect transistor (FET) with a hexagonal boron nitride gate dielectric is fabricated and its electronic characteristics are comprehensively studied by temperature dependence and noise measurements. Ambipolar transfer characteristics are achieved owing to the tunable Fermi level of the graphene contact and negligible and 30 meV Schottky barrier heights for the n‐ and p‐channel regimes, respectively. An inverter is also fabricated to demonstrate ambipolar ReSe2 FET operation in a logic circuit. Furthermore, a p/n switchable unipolar FET is designed and shows potential for building complimentary circuits from a signal device. This work demonstrates the potential of all‐2D ReSe2 FETs and makes available new approaches for designing next‐generation devices.  相似文献   

19.
In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported,to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions.This novel structure offers low barrier height at the source and offers high ON-state current.The ION/IoFF of ISE-CGAA-SB-MOS-FET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade).However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate,dual metal gate,single metal gate with ISE,and dual metal gate with ISE has been presented.The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design.The numerical simulation is performed using the ATLAS-3D device simulator.  相似文献   

20.
2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号