首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This research demonstrates a state-of-the-art vertical-transport photodetector with an n-type 3D MAPbI3/p-type quasi-2D (Q-2D) BA2MA2Pb3I10 perovskite heterojunction. This structure introduces a ≈0.6 V built-in electric field at the n-p junction that greatly improves the characteristics of the perovskite photodetector, and the presence of Q-2D perovskite on the surface improves the life. The electrical polarities of the 3D and the Q-2D perovskite layers are simply controlled by self-constituent doping, making clearly defined n-p characteristics. Doctor-blade coating is used to fabricate the photodetector with a large area. The Q-2D materials with highly oriented (040) Q-2D (n = 2,3) planes are near the surface, and the (111) preferred planes mixed with high index Q-2D materials (n = 4,5) are found near the 3D/Q-2D interface. The stacking and interface are beneficial for carrier extraction and transport, yielding an external quantum efficiency of 77.9%, a carrier lifetime long as 295.7 ns, and a responsibility of 0.41 A W−1. A low dark current density of 6.2 × 10−7 mA cm−2 and a high detectivity of 2.82 × 1013 Jones are obtained. Rise time and fall time are fast as 1.33 and 10.1 µs, respectively. The results show the application potential of 3D/Q-2D n-p junction perovskite photodetectors.  相似文献   

2.
Organometal perovskite single crystals have been recognized as a promising platform for high-performance optoelectronic devices, featuring high crystallinity and stability. However, a high trap density and structural nonuniformity at the surface have been major barriers to the progress of single crystal-based optoelectronic devices. Here, the formation of a unique nanoisland structure is reported at the surface of the facet-controlled cuboid MAPbI3 (MA = CH3NH3+) single crystals through a cation interdiffusion process enabled by energetically vaporized CsI. The interdiffusion of mobile ions between the bulk and the surface is triggered by thermally activated CsI vapor, which reconstructs the surface that is rich in MA and CsI with reduced dangling bonds. Simultaneously, an array of Cs-Pb-rich nanoislands is constructed on the surface of the MAPbI3 single crystals. This newly reconstructed nanoisland surface enhances the light absorbance over 50% and increases the charge carrier mobility from 56 to 93 cm2 V−1 s−1. As confirmed by Kelvin probe force microscopy, the nanoislands form a gradient band bending that prevents recombination of excess carriers, and thus, enhances lateral carrier transport properties. This unique engineering of the single crystal surface provides a pathway towards developing high-quality perovskite single-crystal surface for optoelectronic applications.  相似文献   

3.
The delicate engineering of monovalent cations in perovskite material has led to continuous performance breakthroughs and stability improvement for the perovskite light-emitting diodes (PeLEDs). However, the exact role of A-site cations on the electroluminescence (EL) performance and degradation mechanism of PeLEDs has not been systematically answered yet. Herein, it is demonstrated that the most commonly used methylammonium cation (MA+) has an adverse effect on the electrochemical reaction at the interface between perovskite and metal-oxide layer, leading to deteriorated EL performance as compared to that of the formamidinium cation (FA+)-based perovskite. It reveals that the accelerated deprotonation process of MA+ under an electric field will aggravate the reaction between iodide and metal ion in oxide layer. The further substitution of a small portion of FA+ with inorganic cesium cation (Cs+) results in much enhanced crystallinity and enlarged crystal size, leading to an optimized peak external quantum efficiency of 21.3%. The ion migration process in the PeLEDs can be significantly suppressed with Cs+ incorporation, leading to a smaller roll-off under large current density and an elongated half-lifetime of 190.1 h under a current density of 20 mA cm-2, representing one of the most stable PeLEDs based on 3D perovskite layer.  相似文献   

4.
2D perovskites have attracted extensive attention due to their excellent stability compared with 3D perovskites. However, the intrinsic hydrophilicity of introduced alkylammonium salts effects the humidity stability of 2D/3D perovskites. Devices based on longer chain alkylammonium salts show improvement in hydrophobicity but lower efficiency due to the poorer charge transport among various layers. To solve this issue, two hydrophobic short‐chain alkylammonium salts with halogen functional groups (2‐chloroethylamine, CEA+ and 2‐bromoethylamine, BEA+) are introduced into (Cs0.1FA0.9)Pb(I0.9Br0.1)3 3D perovskites to form 2D/3D perovskite structure, which achieve high‐quality perovskite films with better crystallization and morphology. The optimal 2D/3D perovskite solar cells (PSCs) with 5% CEA+ display a power conversion efficiency (PCE) as high as 20.08% under 1 sun irradiation. Because of the notable hydrophobicity of alkylammonium cations with halogen functional groups and the formed 2D/3D perovskite structure, the optimal PSCs exhibit superior moisture resistance and retain 92% initial PCE after aging at 50 ± 5% relative humidity for 2400 h. This work opens up a new direction for the design of new‐type 2D/3D PSCs with improved performance by employing proper alkylammonium salts with different functional groups.  相似文献   

5.
Quasi-2D perovskites have shown great potential in achieving solution-processed electrically pumped laser diodes due to their multiple-quantum-well structure, which induces a carrier cascade process that can significantly enhance population inversion. However, continuous-wave (CW) optically pumped lasing has yet to be achieved with near-infrared (NIR) quasi-2D perovskites due to the challenges in obtaining high-quality quasi-2D films with suitable phase distribution and morphology. This study regulates the crystallization of a NIR quasi-2D perovskite ((NMA)2FAn−1PbnI3n+1) using an 18-crown-6 additive, resulting in a compact and smooth film with a largely improved carrier cascade efficiency. The amplified spontaneous emission threshold of the film is reduced from 47.2 to 35.9 µJ cm−2. Furthermore, by combining the film with a high-quality distributed feedback grating, this study successfully realizes a CW NIR laser of 809 nm at 110 K, with a high Q-factor of 4794 and a low threshold of 911.6 W cm−2. These findings provide an important foundation for achieving electrically pumped laser diodes based on the unique quasi-2D perovskites.  相似文献   

6.
Fullerene (C60) single crystals with exceptionally low defects and nearly perfect translational symmetry make them appealing in achieving high-performance n-type organic transistors. However, because of its natural 0D structure, control over continuous crystallization of C60 over a large area is extremely challenging. Here, the authors report a solution-phase epitaxial approach for wafer-scale growth of continuously aligned C60 single crystals. This method enables the rational control of the density of nucleation event at meniscus front by confining the size and shape of meniscus with a microchannel template. In this case, a single nucleus as seed crystal can be formed at the front of meniscus, and then epitaxial growth from the seed crystal occurs with continuous retreat of the meniscus. As a result, highly uniform C60 single-crystal array with ultralow defect density is obtained on 2-inch substrate. Organic field-effect transistors made from the C60 single-crystal array show a high average electron mobility of 2.17 cm2 V−1 s−1, along with a maximum mobility of 5.09 cm2 V−1 s−1, which is much superior to the C60 polycrystalline film-based devices. This strategy opens new opportunities for the scalable fabrication of high-performance integrated devices based on organic crystals.  相似文献   

7.
2D perovskites have attracted wide attention for optoelectronic applications because of their unique layer structure and tunable outstanding optical/electrical properties. In addition, 2D Cs3Bi2Br9 nanoflakes possess large effective atomic number, high resistivity, high density as well as excellent stability, rendering it a promising material for X-ray detection. Nevertheless, it is full of challenges to synthesize 2D Cs3Bi2Br9 nanoflakes by conventional inversion temperature crystallization (ITC) strategy due to the existence of Br- vacancies in the Cs3Bi2Br9 crystal nucleus. Herein, an Ag+ assisted ITC (SAITC) strategy to grow 2D Cs3Bi2Br9 nanoflakes is proposed. The synthesis mechanism revealed by both experiments and theoretical calculations can be mainly ascribed to the passivated Br vacancies and enhanced structure stability by adding Ag+ which can effectively prevent the oxidation of 2D Cs3Bi2Br9 nanoflakes from growth of hybrid crystals. The synthesized high-crystallinity 2D Cs3Bi2Br9 nanoflakes possess direct bandgap characteristic, and the mobility lifetime can reach 9.8 × 10−4 cm2 V−1. Excitingly, the fabricated device based on 2D Cs3Bi2Br9 nanoflakes demonstrates ultrahigh sensitivity of detecting X-ray (1.9 CGyair−1cm−2) at very low driven voltage (0.5 V) due to the photoconductive gain mechanism. The 2D Cs3Bi2Br9 nanoflakes synthesized by SAITC method have great potential for developing highly sensitive optoelectronic devices.  相似文献   

8.
Quasi-2D Ruddlesden-Popper perovskites receive tremendous attention for application in light-emitting diodes (LEDs). However, the role of organic ammonium spacers on perovskite film has not been fully-understood. Herein, a spacer cation assisted perovskite nucleation and growth strategy, where guanidinium (GA+) spacer is introduced into the perovskite precursor and at the interface between the hole transport layer (HTL) and the perovskite, to achieve dense and uniform perovskite films with enhanced optical and electrical performance is developed. A thin GABr interface pre-formed on HTL provides more nucleation sites for perovskite crystal; while the added GA+ in perovskite reduces the crystallization rate due to strong hydrogen bonding interacts with intermediates, which promotes the growth of enhanced-quality quasi-2D perovskite films. The ionized ammonium group ( NH3+) of GA+ also favors formation of polydisperse domain distribution, and amine or imine ( NH2 or NH) group interact with perovskite defects through coordination bonding. The spacer cation assisted nucleation and growth strategy is advantageous for producing efficient and high-luminance perovskite LEDs, with a peak external quantum efficiency of over 20% and a luminance up to 100 000 cd m−2. This work can inform and underpin future development of high-performance perovskite LEDs with concurrent high efficiency and brightness.  相似文献   

9.
Energy conversion and storage devices are highly desirable for the sustainable development of human society. Hybrid organic–inorganic perovskites have shown great potential in energy conversion devices including solar cells and photodetectors. However, its potential in energy storage has seldom been explored. Here the crystal structure and electrical properties of the 2D hybrid perovskite (benzylammonium)2PbBr4 (PVK-Br) are investigated, and the consecutive ferroelectric-I (FE1) to ferroelectric-II (FE2) then to antiferroelectric (AFE) transitions that are driven by the orderly alignment of benzylamine and the distortion of [PbBr6] octahedra are found. Furthermore, accompanied by field-induced AFE to FE transition near room temperature, a large energy storage density of ≈1.7 J cm−3 and a wide working temperature span of ≈70 K are obtained; both of which are among the best in hybrid AFEs. This good energy storage performance is attributed to the large polarization of ≈7.6 µC cm−2 and the high maximum electric field of over 1000 kV cm−1, which, as revealed by theoretical calculations, originate from the cooperative coupling between the [PbBr6] octahedral framework and the benzylamine molecules. The research clarifies the discrepancy in the phase transition character of PVK-Br and shed light on developing high-performance energy storage devices based on 2D hybrid perovskite.  相似文献   

10.
Inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, I) is a promising material for developing novel electronic and optoelectronic devices. Despite the substantial progress that has been made in the development of large perovskite single crystals, the fabrication of high‐quality 2D perovskite single‐crystal films, especially perovskite with a low symmetry, still remains a challenge. Herein, large‐scale orthorhombic CsPbBr3 single‐crystal thin films on zinc‐blende ZnSe crystals are synthesized via vapor‐phase epitaxy. Structural characterizations reveal a “CsPbBr3(110)//ZnSe(100), CsPbBr3[?110]//ZnSe[001] and CsPbBr3[001]//ZnSe[010]” heteroepitaxial relationship between the covering CsPbBr3 layer and the ZnSe growth substrate. It is exciting that the epitaxial film presents an in‐plane anisotropic absorption property from 350 to 535 nm and polarization‐dependent photoluminescence. Photodetectors based on the epitaxial film exhibit a high photoresponsivity of 200 A W?1, a large on/off current ratio exceeding 104, a fast photoresponse time of about 20 ms, and good repeatability at room temperature. Importantly, a strong polarization‐dependent photoresponse is also found on the device fabricated using the epitaxial CsPbBr3 film, making the orthorhombic perovskite promising building blocks for optoelectronic devices featured with anisotropy.  相似文献   

11.
Mixed 2D/3D perovskite solar cells (PSCs) show promising performances in efficiency and long-term stability. The functional groups terminated on a large organic molecule used to construct 2D capping layer play a key role in the chemical interaction mechanism and thus influence the device performance. In this study, 4-(trifluoromethyl) benzamidine hydrochloride (TFPhFACl) is adopted to construct 2D capping layer atop 3D perovskite. It is found that there are two mechanisms synergistically contributing to the increase of efficiency: 1) The TFPhFA+ cations form a dipole layer promoting the interfacial charge transport. 2) The suppressed nonradiative recombination of perovskite through the coordination of TFPhFA+ cations with Pb–I octahedron, as well as the recrystallization of 3D perovskite induced by Cl- ions. As a result, the PSC delivers an efficiency of 24.0% with improved open-circuit voltage (VOC) of 1.16 V, short-circuit current density (JSC) of 25.42 mA cm-2, and fill factor of 81.26%. The device shows no decrease in efficiency after 1500 h stored in the air indicating the good stability. The utilization of TFPhFACl not only provides a facile way to optimize the interfacial problems, but also gives a new perspective for rational design of large spacer molecule for constructing efficient 2D/3D PSCs.  相似文献   

12.
Wide-bandgap perovskite is a vital part of perovskite-based tandem solar cells. Currently, wide-bandgap perovskites are typically based on mixed-halide (I/Br) materials, but suffer from photoinduced phase separation. The pure-iodide formamidine/cesium (FA/Cs) based FAxCs1−xPbI3 perovskites with high Cs content are good candidates, whereas the control of crystallization is challenging due to the complex crystallization kinetics. Here, pure-iodide FA0.5Cs0.5PbI3 wide-bandgap perovskite solar cells is reported. As an acidic diammonium salt, methylenediaminium dichloride (MDACl2) is applied as an additive to control the whole crystallization process of perovskite films, including both nucleation and crystal growth. Starting from the solution chemistry, the MDACl2 additive with acidity and strong solvation properties can effectively regulate the chemical composition of perovskite precursor, thus inhibiting the growth of undesired 1D intermediates during the nucleation process. Besides, the incorporation of larger-sized MDA2+ into the lattice compensates for the tolerance factor and accelerates the ion exchange reaction between FA+ and Cs+ in the crystal growth process. As a result, the crystallinity of the perovskite films is significantly improved, benefitting from the dual function of MDACl2. Finally, the efficiency of hole transport layer-free carbon electrode-based wide-bandgap perovskite solar cells reaches 18.52%, which is the highest reported so far.  相似文献   

13.
Solution processing of metal halide perovskites offers the potential for efficient, high-speed roll-based manufacturing of emerging optoelectronic devices such as lightweight photovoltaics and light emitting diodes at lower cost than achievable with incumbent technologies (e.g., Silicon). However, current perovskite fabrication methods are limited in their speed, uniformity, and patterning resolution, relying on subtractive postdeposition scribing for integration of modules and device arrays. Here, a method for flexographic printing of MA0.6FA0.4PbI3 at 60 m min−1, the fastest reported perovskite absorber deposition and the first report of inline drying integrated with roll-based printing, is presented. This process delivers high-resolution patterning (< 3 µm line edge roughness) and precise thickness control through rheological design of precursor inks, allowing scalably printed 50 µm features over large areas (140 cm2), while obviating damaging scribing steps. 2D scanning photoluminescence (PL) is applied to resolve correlations between ink leveling dynamics and optoelectronic quality. Integrating these highly uniform printed perovskite absorbers into n-i-p planar perovskite solar cells, photovoltaic conversion efficiency up to 20.4% (0.134 cm2), the highest performance yet reported for any roll-printed perovskite cells is achieved. This study, thus, establishes flexography as a scalable approach to deposit precisely-patterned high-quality perovskites extensible to applications in emitter and detector arrays.  相似文献   

14.
Molecular perovskites have demonstrated great potential for ferroelectrics and nonlinear optics; however, their charge transport properties for optoelectronics have rarely been explored. Here, understanding of charge transport behavior of molecular perovskite under X-ray excitation based on centimeter-scale TMCM-CdCl3 (TMCM+, trimethylchloromethyl ammonium) single crystal is demonstrated. The crystal is fabricated from an aqueous solution and exhibits a large bandgap of 5.51 eV, with the valence band maximum mainly dominated by the Cl-p/Cd-d states and the conduction band minimum primarily by Cd-s/Cl-p states. Charge mobility exceeding 40 cm2 V−1 s−1 and mobility–lifetime (µτ) product on the order of 10−4 cm2 V−1 for the crystal are observed. These excellent optoelectronic properties translate to an efficient photoresponse under X-ray excitation, with the sensitivity reaching 128.9 ± 4.64 µC Gyair−1 cm−2 [fivefold higher than that of the commercialized amorphous selenium (α-Se)] and a low detection limit of 1.06 μC Gyair−1 s−1 (10 V bias). This work pioneers a superior metal-based molecular perovskite single-crystal based paradigm for optoelectronic investigation, which may lead to the discovery of a new generation of X-ray detection and imaging materials.  相似文献   

15.
It is highly desirable for all-inorganic perovskite solar cells (PVSCs) to have reduced nonideal interfacial charge recombination in order to improve the performance. Although the construction of a 2D capping layer on 3D perovskite is an effective way to suppress interfacial nonradiative recombination, it is difficult to apply it to all-inorganic perovskites because of the resistance of Cs+ cesium ions in cation exchange reactions. To alleviate this problem, a simple approach using an ultra-thin 2D perovskite to terminate CsPbI3 grain boundaries (GBs) without damaging the original 3D perovskite is developed. The 2D perovskite at the GBs not only enhances the charge-carrier extraction and transport but also effectively suppresses nonradiative recombination. In addition, because the 2D perovskite can prevent the moisture and oxygen from penetrating into the GBs and at the same time suppress the ion migration, the 2D terminated CsPbI3 films exhibit significantly improved stability against humidity. Moreover, the devices without encapsulation can retain ≈81% of its initial power conversion efficiency (PCE) after being stored at 40 ± 5% relative humidity for 84 h. The 2D-based champion device exhibits a high PCE of 18.82% with a high open-circuit voltage of 1.16 V.  相似文献   

16.
2D transition metal carbide/nitride heterostructures are emerging pseudocapacitive materials for supercapacitors (SCs); however, the lack of efficient synthesis methods and an in-depth understanding of the pseudocapacitive storage mechanism of these potentially important materials impede their applications in SCs. Herein, 2D MoN/MoC nanosheets with a precisely regulated interface are prepared controllably by a scalable salt-assisted method with bulk MoS2 as the precursor. In operando infrared spectroscopy and electrochemical quartz crystal microbalance results reveal that the pseudocapacitance of the MoN/MoC nanosheets originates from the reversible reaction between Mo–N sites and H+ in the acidic electrolyte. Density-functional theory calculations and X-ray photoelectron spectroscopy disclose that the MoC/MoN heterointerface induces the internal electric field from the accumulated negative charges at the Mo–N sites by electron donation from MoC, leading to enhanced H+ adsorption at the Mo–N sites and superior pseudocapacitive storage. The heterostructured MoN/MoC nanosheets show a large volumetric capacity of 1045.3 F cm−3 at 1 A cm−3, high-rate capability of 702.8 F cm−3 at 10 A cm−3, and superior cyclability with capacity retention of 98% after 10,000 cycles, which outperform reported Mo-based carbides and nitrides. The results provide new insights into the development of high-performance 2D heterostructured materials for superior pseudocapacitive storage.  相似文献   

17.
Recently, there have been extensive research efforts on developing high performance organolead halide based perovskite solar cells. While most studies focused on optimizing the deposition processes of the perovskite films, the selection of the precursors has been rather limited to the lead halide/methylammonium (or formamidium) halide combination. In this work, we developed a new precursor, HPbI3, to replace lead halide. The new precursor enables formation of highly uniform formamidium lead iodide (FAPbI3) films through a one‐step spin‐coating process. Furthermore, the FAPbI3 perovskite films exhibit a highly crystalline phase with strong (110) preferred orientation and excellent thermal stability. The planar heterojunction solar cells based on these perovskite films exhibit an average efficiency of 15.4% and champion efficiency of 17.5% under AM 1.5 G illumination. By comparing the morphology and formation process of the perovskite films fabricated from the formamidium iodide (FAI)/HPbI3, FAI/PbI2, and FAI/PbI2 with HI additive precursor combinations, it is shown that the superior property of the HPbI3 based perovskite films may originate from 1) a slow crystallization process involving exchange of H+ and FA+ ions in the PbI6 octahedral framework and 2) elimination of water in the precursor solution state.  相似文献   

18.
By studying the drift of Na+ ions in the firstly grown Na-doped bulk Ge crystals as well as by analyzing optical and some other characteristics of this material, the following conclusions are made, many of which are different from the commonly accepted statements: (1) Ge can be uniformly doped with Na during the bulk Ge crystals growth from the melt; (2) maximum solubility at room temperature and distribution coefficient of Na in Ge are (0.3–1)×1015 cm−3 and (0.7–2.3)×10−7, respectively; (3) Na is a donor impurity in bulk Ge, and Na atoms introduced during the crystal growth are predominantly electrically active; (4) the evaluated values of diffusion parameters of Na in Ge are as follows: the diffusion coefficient D=3.6×10−7 cm2/s, pre-exponential factor D0=0.13 cm2/s, the activation energy for diffusion Q=0.33 eV; (5) Na is an interstitial impurity in Ge and rather rapidly drifts in an electric field, most likely, via interstitial sites; (6) the resistance distribution along the crystal length may be changed by DC electric field application and remain stable at the long-term crystal storage. The stability in the Ge:Na properties opens the possibility for using Ge:Na crystals not only for creating passive optical elements of infrared imaging technique, as we are doing now, but also for the electrical appliances, in particular for the substitution of the thermally unstable Li for Na in germanium detectors of γ-radiation.  相似文献   

19.
2D tin-based perovskites have gained considerable attention for use in diverse optoelectronic applications, such as solar cells, lasers, and thin-film transistors (TFTs), owing to their good stability and optoelectronic properties. However, their intrinsic charge-transport properties are limited, and the insulating bulky organic ligands hinder the achievement of high-mobility electronics. Blending 3D counterparts into 2D perovskites to form 2D/3D hybrid structures is a synergistic approach that combine the high mobility and stability of 3D and 2D perovskites, respectively. In this study, reliable p-channel 2D/3D tin-based hybrid perovskite TFTs comprising 3D formamidinium tin iodide (FASnI3) and 2D fluorinated 4-fluoro-phenethylammonium tin iodide ((4-FPEA)2SnI4) are reported. The optimized FPEA-incorporated TFTs show a high hole mobility of 12 cm2 V−1 s−1, an on/off current ratio of over 108, and a subthreshold swing of 0.09 V dec−1 with negligible hysteresis. This excellent p-type characteristic is compatible with n-type metal-oxide TFT for constructing complementary electronics. Two procedures of antisolvent engineering and device patterning are further proposed to address the key concern of low-performance reproducibility of perovskite TFTs. This study provides an alternative A-cation engineering method for achieving high-performance and reliable tin-halide perovskite electronics.  相似文献   

20.
Sn-based perovskite materials are promising lead-free alternatives in thin film photodetectors (PDs) for applications such as optical communications, night visions and biomedical near-infrared imaging systems. However, constructing Sn-based photodetectors with high sensitivity, ultrafast response, and good operation stability has been a challenge. Herein, the phenyl-ethyl ammonium (PEA+) additive is introduced in pristine FASnI3, which regulates the thin film growth, passivates the trap/defect states, prevents Sn2+/Sn4+oxidation, and releases the crystal strain. The Resulting FA0.8PEA0.2SnI3 thin films exhibit highly crystalline order and flexibility. A self-powered PD using FA0.8PEA0.2SnI3 as the active layer demonstrates excellent responsivity of 0.262 W−1, detectivity of 2.3 × 1011 Jones. And it possesses the fastest rise and decay time of 25 µs and 42 µs as compared with the state-of-art Sn-based perovskite PDs. The transient absorption spectroscopy analysis validates greatly reduced trapping states and defects of FASnI3 with the PEA+ film for ultrafast response. A flexible Sn-based perovskite PD without any encapsulation in air continuously shows ultrafast responses after 10,000 bending cycles. Meanwhile, a flexible imaging system can be realized by a 5 × 5 PD array with good sensing results. This study shows great potential in nontoxic and ultrafast Sn-based perovskite PDs for flexible imaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号