共查询到19条相似文献,搜索用时 63 毫秒
1.
给出一个新的求解线性随机时滞微分方程的显式分裂步长Milstein格式.运用ItoTaylor展开式证明该格式相对于已有的求解随机时滞微分方程的分裂步长方法而言具有更好的收敛性.数值实验验证了理论分析的正确性. 相似文献
2.
本文讨论Milstein方法用于求解线性中立型随机延迟微分方程初值问题时数值解的稳定性,给出了Milstein方法均方稳定的一个充分条件.文末的数值试验证实了本文所获理论结果的正确性. 相似文献
3.
4.
5.
本文以线性随机延迟微分方程为试验方程研究了随机延迟微分方程的Milstein方法的稳定性,给出了均方稳定的充分条件,所得结果表明Milstein方法能保持试验方程解的稳定性.完成了相关的数值试验以验证所得结论的正确性. 相似文献
6.
本文针对一般的非线性随机延迟微分方程,证明了当系统理论解满足均方稳定性条件时,则当方程的漂移和扩散项满足一定的条件时,Milstein方法也是均方稳定的.数学实验进一步验证了我们的结论. 相似文献
7.
本文给出了Non Lipschitz条件下的随机微分方程的一个逼近定理 . 相似文献
8.
本文讨论了一类Rosenbrock方法求解比例延迟微分方程,y′(t)=λy(t) μy(qt),λ,μ∈C,0 相似文献
9.
有随机投资回报的随机保费模型的渐近破产概率(英文) 总被引:1,自引:0,他引:1
本文研究了随机投资回报环境下扰动的随机保费模型的破产问题.利用鞅方法和随机分析的理论讨论了盈余过程的一些基本性质,得到了一个可以用来求解破产时刻的Laplace变换的积分微分方程,结果推广了已有的随机投资问报风险模型的结论. 相似文献
10.
本文研究了具有C1扩散系数的Stratonovich随机微分方程的强解的存在唯一性. 相似文献
11.
In this paper we discuss diagonally implicit and semi-implicit methods based on the three-stage stiffly accurate Runge-Kutta methods for solving Stratonovich stochastic differential equations(SDEs).Two methods,a three-stage stiffly accurate semi-implicit(SASI3) method and a three-stage stiffly accurate diagonally implicit (SADI3) method,are constructed in this paper.In particular,the truncated random variable is used in the implicit method.The stability properties and numerical results show the effectiveness of these methods in the pathwise approximation of stiff SDEs. 相似文献
12.
我们主要构造了数值求解一类1指标随机延迟微分代数系统的Euler-Maruyama方法,并且证明用该方法求解此类问题可达到1/2阶均方收敛.最后的效值试验验证了方法的有效性及所获结论的正确性. 相似文献
13.
本文研究非线性中立型随机延迟微分方程随机θ方法的均方稳定性.在方程解析解均方稳定的条件下,证明了如下结论:当θ∈[0,1/2)时,随机θ方法对于适当小的时间步长是均方稳定的;当θ∈[1/2,1]时,随机θ方法对于任意步长都是均方稳定的.数值结果验证了所获结论的正确性. 相似文献
14.
In this paper we construct implicit stochastic Runge–Kutta (SRK) methods for solving stochastic differential equations of
Stratonovich type. Instead of using the increment of a Wiener process, modified random variables are used. We give convergence
conditions of the SRK methods with these modified random variables. In particular, the truncated random variable is used.
We present a two-stage stiffly accurate diagonal implicit SRK (SADISRK2) method with strong order 1.0 which has better numerical
behaviour than extant methods. We also construct a five-stage diagonal implicit SRK method and a six-stage stiffly accurate
diagonal implicit SRK method with strong order 1.5. The mean-square and asymptotic stability properties of the trapezoidal
method and the SADISRK2 method are analysed and compared with an explicit method and a semi-implicit method. Numerical results
are reported for confirming convergence properties and for comparing the numerical behaviour of these methods.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
15.
随机微分方程欧拉格式算法分析 总被引:3,自引:0,他引:3
首先给出了线性随机微分方程的欧拉格式算法,然后给出了非线性随机微分方程变步长的欧拉格式算法,接着讨论了其对初值的连续依赖性和收敛性. 相似文献
16.
In this paper we discuss two-stage diagonally implicit stochastic Runge-Kutta methods with strong order 1.0 for strong solutions of Stratonovich stochastic differential equations. Five stochastic Runge-Kutta methods are presented in this paper. They are an explicit method with a large MS-stability region, a semi-implicit method with minimum principal error coefficients, a semi-implicit method with a large MS-stability region, an implicit method with minimum principal error coefficients and another implicit method. We also consider composite stochastic Runge-Kutta methods which are the combination of semi-implicit Runge-Kutta methods and implicit Runge-Kutta methods. Two composite methods are presented in this paper. Numerical results are reported to compare the convergence properties and stability properties of these stochastic Runge-Kutta methods. 相似文献
17.
Andreas Rößler 《BIT Numerical Mathematics》2006,46(1):97-110
A general class of stochastic Runge–Kutta methods for Itô stochastic differential equation systems w.r.t. a one-dimensional Wiener process is introduced. The colored rooted tree analysis is applied to derive conditions for the coefficients of the stochastic Runge–Kutta method assuring convergence in the weak sense with a prescribed order. Some coefficients for new stochastic Runge–Kutta schemes of order two are calculated explicitly and a simulation study reveals their good performance. 相似文献
18.
In this paper, we develop the truncated Euler-Maruyama (EM) method for
stochastic differential equations with piecewise continuous arguments (SDEPCAs),
and consider the strong convergence theory under the local Lipschitz condition plus
the Khasminskii-type condition. The order of convergence is obtained. Moreover,
we show that the truncated EM method can preserve the exponential mean square
stability of SDEPCAs. Numerical examples are provided to support our conclusions. 相似文献
19.
该文构造了Euler-Maruyama(EM)方法求解一类带Caputo导数的变分数阶随机微分方程. 首先, 证明了该方程的适定性; 然后, 详细推导出对应的EM方法, 并对该方法进行了强收敛性的分析, 通过使用EM方法的连续形式证明了其强收敛阶为β-0.5, 其中β是Caputo导数的阶数,且满足0.5 < β < 1. 最后, 通过数值实验验证了理论分析结果的正确性. 相似文献