首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Dihydrolipoamide dehydrogenase is a common component of mammalian multienzyme complexes that decarboxylate alpha-ketoacids and catabolize glycine. The common function is to reoxidize a reduced lipoate component of each complex, thereby preparing that lipoate for another round of catalysis. Regions within dihydrolipoamide dehydrogenase involved in association with other proteins of the complexes are poorly defined, and despite high amino acid sequence conservation through evolution, it is unknown if dihydrolipoamide dehydrogenases are functionally equivalent across species. To address this issue, we asked whether the human enzyme could restore function to the alpha-ketoacid dehydrogenase complexes in a yeast strain deficient in endogenous dihydrolipoamide dehydrogenase. This dihydrolipoamide dehydrogenase null mutant will not grow on non-fermentable carbon sources. The human enzyme expressed from a CEN plasmid complemented the growth phenotype and restored full activity to the pyruvate and alpha-ketoglutarate dehydrogenase complexes. Human dihydrolipoamide dehydrogenases with selected amino acid substitutions were then tested in the null strain for their ability to restore function. Substitutions tested represented naturally occurring candidate mutations identified in an individual with inactive dihydrolipoamide dehydrogenase. A K37E change had full function while a P453L change resulted in reduced dihydrolipoamide dehydrogenase abundance in the mitochondria and no detectable catalytic activity.   相似文献   

4.
5.
6.
We have investigated the role of protein phosphorylation in regulation of Saccharomyces cerevisiae kinetochores. By use of phosphatase inhibitors and a type 1 protein phosphatase mutant (glc7-10), we show that the microtubule binding activity, but not the centromeric DNA-binding activity, of the kinetochore complex is regulated by a balance between a protein kinase and the type 1 protein phosphatase (PP1) encoded by the GLC7 gene. glc7-10 mutant cells exhibit low kinetochore-microtubule binding activity in vitro and a high frequency of chromosome loss in vivo. Specifically, the Ndc10p component of the centromere DNA-binding CBF3 complex is altered by the glc7-10 mutation; Ndc10p is hyperphosphorylated in glc7-10 extracts. Furthermore, addition of recombinant Ndc10p reconstitutes the microtubule-binding activity of a glc7-10 extract to wild-type levels. Finally, the glc7-10-induced mitotic arrest is abolished in spindle checkpoint mutants, suggesting that defects in kinetochore-microtubule interactions caused by hyperphosphorylation of kinetochore proteins activate the spindle checkpoint.  相似文献   

7.
Metabolic functions of duplicate genes in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3       下载免费PDF全文
Kuepfer L  Sauer U  Blank LM 《Genome research》2005,15(10):1421-1430
The roles of duplicate genes and their contribution to the phenomenon of enzyme dispensability are a central issue in molecular and genome evolution. A comprehensive classification of the mechanisms that may have led to their preservation, however, is currently lacking. In a systems biology approach, we classify here back-up, regulatory, and gene dosage functions for the 105 duplicate gene families of Saccharomyces cerevisiae metabolism. The key tool was the reconciled genome-scale metabolic model iLL672, which was based on the older iFF708. Computational predictions of all metabolic gene knockouts were validated with the experimentally determined phenotypes of the entire singleton yeast library of 4658 mutants under five environmental conditions. iLL672 correctly identified 96%-98% and 73%-80% of the viable and lethal singleton phenotypes, respectively. Functional roles for each duplicate family were identified by integrating the iLL672-predicted in silico duplicate knockout phenotypes, genome-scale carbon-flux distributions, singleton mutant phenotypes, and network topology analysis. The results provide no evidence for a particular dominant function that maintains duplicate genes in the genome. In particular, the back-up function is not favored by evolutionary selection because duplicates do not occur more frequently in essential reactions than singleton genes. Instead of a prevailing role, multigene-encoded enzymes cover different functions. Thus, at least for metabolism, persistence of the paralog fraction in the genome can be better explained with an array of different, often overlapping functional roles.  相似文献   

8.
9.
Summary By hybridization with a putative MAL2p regulatory sequence we have identified a 19 kb long BamH1 DNA fragment to contain the MALp sequence in a MAL4 strain. A mixture of recombinant plasmids was prepared by ligation of purified 19 kb BamH1 fragments partially digested with Sau3A into the multicopy vector YEp1357. The source of DNA was a strain carrying the MAL4 locus. Yeast maltose non-fermenting strains were transformed with the plasmid mixture. A recombinant plasmid, pRM-4, containing the MAL4p regulatory gene was isolated that complements the maltose-negative phenotype. The plasmid was shown to confer the ability to synthesize maltase to recipient strains grown under inducing as well as under repressing conditions.The MAL4p regulatory sequence cloned was used as a probe in hybridization experiments to study the degrees of homology between the different MAL regulatory genes. The results showed that the sequence from MAL4 strains is strongly homologous to that of MAL3 strains whereas it shows significant differences to the ones of MAL1 and MAL2 strains.Southern analysis of the segregants of crosses between maltose-positive strains and ma10 strains allowed us to localize the maltase regulatory sequence of each MAL locus within a characteristic BamH1 fragment of genomic DNA hybridizing to the isolated sequence.  相似文献   

10.
11.
The enzyme dihydropteroate synthase (DHPS) is an important target for sulfa drugs in both prokaryotic and eukaryotic microbes. However, the understanding of DHPS function and the action of antifolates in eukaryotes has been limited due to technical difficulties and the complexity of DHPS being a part of a bifunctional or trifunctional protein that comprises the upstream enzymes involved in folic acid synthesis (FAS). Here, yeast strains have been constructed to study the effects of FOL1 expression on growth and sulfa drug resistance. A DHPS knockout yeast strain was complemented by yeast vectors expressing the FOL1 gene under the control of promoters of different strengths. An inverse relationship was observed between the growth rate of the strains and FOL1 expression levels. The use of stronger promoters to drive FOL1 expression led to increased sulfamethoxazole resistance when para-aminobenzoic acid (pABA) levels were elevated. However, high FOL1 expression levels resulted in increased susceptibility to sulfamethoxazole in pABA free media. These data suggest that up-regulation of FOL1 expression can lead to sulfa drug resistance in Saccharomyces cerevisiae.  相似文献   

12.
13.
14.
In order to find further genes of the mitochondrial fatty acid synthase, we searched the genome of Saccharomyces cerevisiae for sequences that are homologous to conserved regions of bacterial fatty acid synthase genes. We found the gene products of ORF YKL055c (EMBL Accession No. X75781) and of YOR221C (EMBL Accession No. X92441) to be homologous to bacterial 3-oxoacyl-(acyl carrier protein) reductases and to malonyl-CoA:ACP-transferases, respectively. We disrupted these two genes which in both cases led to a respiratory deficient phenotype, as is the case for the genes encoding a mitochondrial acyl carrier protein and a β-ketoacyl-ACP synthase. We propose to call the above mentioned genes OAR1[3-oxo-acyl-(acyl carrier protein) reductase] and MCT1 (malonyl-CoA:ACP transferase). They are presumed to be part of a type-II mitochondrial fatty acid synthase, a relic of the endosymbiontic origin of mitochondria, delivering substrates for phospholipid re-modelling and/or repair. Received: 25 April / 16 September 1997  相似文献   

15.
Summary The STA2 (glucoamylase) gene of Saccharomyces cerevisiae has been mapped close to the end of the left arm of chromosome II. Meiotic analysis of a cross between a haploid strain containing STA2, and another strain carrying the melibiase gene MEL1 (which is known to be at the end of the left arm of chromosome II) produced parental ditype tetrads only. Since there is no significant DNA sequence similarity between the STA2 and MEL1 genes, or their respective flanking regions, we conclude that these two genes are carried by separate non-hybridizing sequences of chromosomal DNA, either of which can reside at the end of the left arm of chromosome II. By analogy with the mating-type locus of Neurospora crassa, we suggest that the STA2 and MEL1 genes are idiomorphs with respect to one another.  相似文献   

16.
17.
In order to search for an occult cytotoxic enzymatic activity of the toxic shock syndrome toxin 1 (TSST-1), we placed the gene encoding TSST-1 (tstH) under the control of an inducible promoter in the eukaryotic yeast Saccharomyces cerevisiae. Under similar circumstances, the known bacterial enzymatic cytotoxins Shiga-like toxin and diphtheria toxin are both highly lethal to the yeast host. Although full-length stable TSST-1 was demonstrated within the yeast cells and although it retained mitogenicity for human T cells, it had no apparent effect on the yeast cells' growth kinetics or on their gross morphology. Retrieval and sequencing of the toxin gene revealed the wild-type sequence throughout, thus demonstrating that the apparent lack of toxicity for the yeast cells was not due to a serendipitous attenuating mutation within the coding region of the toxin gene. Similar results obtained after a second transformation of the same strain and after transformation of an unrelated strain demonstrate that neither chance permissive host mutation nor intrinsic host resistance was likely to have obscured an existing cytotoxic property of TSST-1. We conclude that TSST-1 probably does not possess a discrete enzymatic property cytotoxic for eukaryotic cells.  相似文献   

18.
Summary By use of a set of 8 aneuploid strains of the yeast Saccharomyces cerevisiae, carrying from 1 to 5 identified disomic chromosomes, in crosses to a set of haploid strains collectively bearing 11 unmapped genes, the following chromosome assignments were obtained for these unmapped genes: arg80 on XIII;arg3 on X;car2 on XII; cpa1 and tsm8740 on XV; tsm7269 (=rna6) on II; cpa2 on X or XV; arg82 and tsm4572 on III, IV or XVI; car1 and arg81 on II, IV, VI, VII or XVI. Linkage tests between the unmapped genes and markers located on the chromosomes that had been designated as possible carriers by the previous analysis allowed 8 genes to be localized. The remaining three genes, cpa2, car1 and arg81 (located on fragment F8), could not be positioned on any of the chromosomes indicated by the trisomic analysis, in spite of testing for linkage to markers covering most of the known regions of these chromosomes.  相似文献   

19.
Summary Six unlinked loci for invertase structural genes are known in the yeast Saccharomyces cerevisiae: SUC1-SUC5 and SUC7. These genes are similar in structure and expression but not identical. Different yeast strains possess none, one or several of these genes.We have isolated the genes SUC1-SUC5, subcloned them into the multicopy vector YEp24 and compared the expression of the five SUC genes in one recipient strain. SUC2 was isolated by transformation of a suc0 strain with a gene pool and complementation to sucrose fermentation. SUC4 was cloned from a minipool of chromosomal fragments which were shown to contain SUC4 by Southern hybridization. SUC1, SUC3 and SUC5 were isolated using the method of plasmid eviction. A plasmid containing regions flanking SUC4 was integrated next to these SUC genes. The plasmid together with the SUC genes were then cut out of the chromosome using an appropriate restriction endonuclease.The length of chromosomal DNA fragments containing the different SUC genes were 4.8 kb for SUC1, 5.2 kb for SUC2, 4.8 kb for SUC3, 12.8 kb for SUC4 and 17.2 kb for SUC5.Fragments containing the complete SUC genes and the sequences controlling their expression were subcloned into YEp24 and transformed into a strain without any active invertase gene. Invertase activity of transformants was measured after growth repressing (8% glucose) and derepressing (2% raffinose) conditions. As expected from results with strains carrying the individual SUC genes in a chromosomal location, the SUC genes were expressed to a different extent.Dedicated to Prof. Dr. Fritz Kaudewitz on the occasion of his 65th birthdayThis work was supported by Deutsche Forschungsgemeinschaft  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号