首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Transient isotopic studies in the temporal analysis of products (TAP) reactor evidenced the importance of the lifetime of oxygen species generated upon N2O decomposition on extraframework iron sites of Fe-silicalite for methane oxidation at 723 K. Fe-silicalite effectively activates CH4 when N2O and CH4 are pulsed together in the reactor. However, these oxygen species gradually become inactive for methane oxidation as the time delay between the N2O and CH4 pulses is increased from 0 to 2 s.  相似文献   

3.
Conversion of NOx with reducing agents H2, CO and CH4, with and without O2, H2O, and CO2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NOx to N2 conversion with H2 and CO (>90% conversion and N2 selectivity) range under lean conditions. The formation of N2O is absent in the presence of both H2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H2 and CO at 450–500 K. The positive effect of cerium is significant in the case of H2 and CH4 reducing agent but is less obvious with H2/CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH4, 500 ppm NO, 5% O2, 10% H2O (0–1% H2), N2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NOx reduction with H2, CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K.  相似文献   

4.
SO2 has been recognized as an effective reducing agent for N2O over iron-containing zeolite catalysts, lowering the operation temperature up to 100 K with respect to the direct N2O decomposition. This unique behavior contrasts with the common poisoning effect of SO2 over other active de-N2O metals (e.g. Co, Cu, Rh, and Ru). The formation of surface sulfates has been generally posed as the main cause for catalyst deactivation by SO2. Through the use of in situ infrared spectroscopy (DRIFTS), we show that steam-activated FeZSM-5 indeed builds up stable sulfate species during the N2O + SO2 reaction. Significant amounts of sulfur were detected in the used catalyst by elemental analysis and X-ray photoelectron spectroscopy. However, the enhanced N2O conversion is remarkably stable, indicating that the reducing action by SO2 and the sulfation of the surface are decoupled. The resulting sulfate species are thus spectators in the catalytic process and do not block or alter the structure of the active sites for N2O reduction and decomposition.  相似文献   

5.
A series of CeO2 promoted cobalt spinel catalysts were prepared by the co-precipitation method and tested for the decomposition of nitrous oxide (N2O). Addition of CeO2 to Co3O4 led to an improvement in the catalytic activity for N2O decomposition. The catalyst was most active when the molar ratio of Ce/Co was around 0.05. Complete N2O conversion could be attained over the CoCe0.05 catalyst below 400 °C even in the presence of O2, H2O or NO. Methods of XRD, FE-SEM, BET, XPS, H2-TPR and O2-TPD were used to characterize these catalysts. The analytical results indicated that the addition of CeO2 could increase the surface area of Co3O4, and then improve the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step of the N2O decomposition over cobalt spinel catalyst. We conclude that these effects, caused by the addition of CeO2, are responsible for the enhancement of catalytic activity of Co3O4.  相似文献   

6.
G. Centi  F. Vazzana 《Catalysis Today》1999,53(4):6695-693
The catalytic behavior in N2O reduction by propane in the presence of O2, H2O and SO2 of Fe/ZSM-5 catalysts prepared by ion exchange and chemical vapour deposition (CVD) is reported. The catalyst prepared by CVD shows a lower dependence of the rate of selective N2O reduction on the decrease in C3H8 to N2O ratio in the feed and a higher resistance to deactivation by SO2 in accelerated durability tests with high SO2 concentration (500 ppm). This catalyst shows stable catalytic behavior in the presence of SO2 for more than 600 h of time-on-stream. Characterization of the catalysts by UV–VIS–NIR diffuse reflectance indicates that the poor performances of the sample prepared by ion exchange could be related to the presence of highly clustered Fe3+ species, in this catalyst. On the other hand, Fe2O3 particles are not present in the sample prepared by CVD while mainly isolated Fe3+ ions and iron-oxide nanoclusters are present.  相似文献   

7.
Dispersing La2O3 on δ- or γ-Al2O3 significantly enhances the rate of NO reduction by CH4 in 1% O2, compared to unsupported La2O3. Typically, no bend-over in activity occurs between 500° and 700°C, and the rate at 700°C is 60% higher than that with a Co/ZSM-5 catalyst. The final activity was dependent upon the La2O3 precursor used, the pretreatment, and the La2O3 loading. The most active family of catalysts consisted of La2O3 on γ-Al2O3 prepared with lanthanum acetate and calcined at 750°C for 10 h. A maximum in rate (mol/s/g) and specific activity (mol/s/m2) occurred between the addition of one and two theoretical monolayers of La2O3 on the γ-Al2O3 surface. The best catalyst, 40% La2O3/γ-Al2O3, had a turnover frequency at 700°C of 0.05 s−1, based on NO chemisorption at 25°C, which was 15 times higher than that for Co/ZSM-5. These La2O3/Al2O3 catalysts exhibited stable activity under high conversion conditions as well as high CH4 selectivity (CH4 + NO vs. CH4 + O2). The addition of Sr to a 20% La2O3/γ-Al2O3 sample increased activity, and a maximum rate enhancement of 45% was obtained at a SrO loading of 5%. In contrast, addition of SO=4 to the latter Sr-promoted La2O3/Al2O3 catalyst decreased activity although sulfate increased the activity of Sr-promoted La2O3. Dispersing La2O3 on SiO2 produced catalysts with extremely low specific activities, and rates were even lower than with pure La2O3. This is presumably due to water sensitivity and silicate formation. The La2O3/Al2O3 catalysts are anticipated to show sufficient hydrothermal stability to allow their use in certain high-temperature applications.  相似文献   

8.
Cu-ZSM-5 and Cu-AlTS-1 catalysts were prepared by solid state ion exchange and studied in DeNOx reactions. A NO3 type surface complex was found to be an active intermediate in the decomposition of NO and N2O. Copper was oxidized to Cu2+ in the decomposition reactions. Oscillations at full N2O conversion were observed in the gas phase O2 concentration, without any change in the N2 concentration. The oscillation was synchronized by gas phase NO formed from the NO3 complex. The same complex seems to be an active intermediate also in NO selective catalytic reduction (SCR) by methane, whereas carbonaceous deposits play a role in NO SCR by propane. TPD reveals that only 10–20% of the total copper in the zeolites participates in the catalytic cycles.  相似文献   

9.
CO_2吸附强化CH_4/H_2O重整制氢是提供低成本高纯氢气和实现CO_2减排的方法之一。其中,催化剂和吸附剂是该工艺的重要组成部分,其活性与选择性制约了反应速率和产率,寿命长短关系到生产成本。综述了CO_2吸附强化CH_4/H_2O重整制氢催化剂和吸附剂的研究现状及存在的问题,机械混合的催化剂与吸附剂在反应过程中存在吸附产物包覆催化活性位点的问题,导致催化剂活性迅速下降。针对该问题,进一步探讨了不同结构双功能复合催化剂的结构特性、研究现状及其在循环-再生过程中存在的问题,核壳型双功能催化剂具有吸附组分与催化剂组分相对独立、催化组分分散分布和比表面积大等优点,在吸附强化制氢中有进一步研究的潜力。利用双功能催化剂的结构特点,实现反复循环再生过程中催化与脱碳反应的匹配,是推动CO_2吸附强化CH_4/H_2O重整制氢技术工业化发展的关键。  相似文献   

10.
分别以Cu(NO_3)_2·3H_2O和50%Mn(NO_3)_2水溶液为铜源和锰源,K_2CO_3为沉淀剂,采用沉淀法和共沉淀法制备单一Cu、Mn氧化物催化剂和Cu-Mn-O复合氧化物催化剂,用于催化N_2O直接分解反应,并利用N_2物理吸附-脱附、XRD、FT-IR和TPR等进行表征。结果表明,单一Cu和Mn氧化物分别以体相CuO和Mn2O_3物相形式存在,Cu-Mn-O复合氧化物中除形成CuMn_2O_4尖晶石物相外,还有一定量小晶粒CuO,较单一氧化物具有更加优异的还原性能,表现出较高的催化N_2O直接分解活性。在空速10 000 h~(-1)和N_2O体积分数0.1%条件下,Cu-Mn-O复合氧化物催化剂可在440℃催化N_2O完全分解,分别较单一Cu和Mn氧化物催化剂降低了40℃和60℃。  相似文献   

11.
Both NO decomposition and NO reduction by CH4 over 4%Sr/La2O3 in the absence and presence of O2 were examined between 773 and 973 K, and N2O decomposition was also studied. The presence of CH4 greatly increased the conversion of NO to N2 and this activity was further enhanced by co-fed O2. For example, at 773 K and 15 Torr NO the specific activities of NO decomposition, reduction by CH4 in the absence of O2, and reduction with 1% O2 in the feed were 8.3·10−4, 4.6·10−3, and 1.3·10−2 μmol N2/s m2, respectively. This oxygen-enhanced activity for NO reduction is attributed to the formation of methyl (and/or methylene) species on the oxide surface. NO decomposition on this catalyst occurred with an activation energy of 28 kcal/mol and the reaction order at 923 K with respect to NO was 1.1. The rate of N2 formation by decomposition was inhibited by O2 in the feed even though the reaction order in NO remained the same. The rate of NO reduction by CH4 continuously increased with temperature to 973 K with no bend-over in either the absence or the presence of O2 with equal activation energies of 26 kcal/mol. The addition of O2 increased the reaction order in CH4 at 923 K from 0.19 to 0.87, while it decreased the reaction order in NO from 0.73 to 0.55. The reaction order in O2 was 0.26 up to 0.5% O2 during which time the CH4 concentration was not decreased significantly. N2O decomposition occurs rapidly on this catalyst with a specific activity of 1.6·10−4 μmol N2/s m2 at 623 K and 1220 ppm N2O and an activation energy of 24 kcal/mol. The addition of CH4 inhibits this decomposition reaction. Finally, the use of either CO or H2 as the reductant (no O2) produced specific activities at 773 K that were almost 5 times greater than that with CH4 and gave activation energies of 21–26 kcal/mol, thus demonstrating the potential of using CO/H2 to reduce NO to N2 over these REO catalysts.  相似文献   

12.
Catalytic partial oxidation of methane to synthesis gas over ZrO2 and yttrium-stabilized zirconia (YSZ) is studied using O2 and N2O as oxidants. ZrO2 is much more active than YSZ in oxidation of methane with N2O. In contrast, YSZ is significantly more active than ZrO2 when O2 is used as an oxidant. The presence of O2 does not influence the rate of N2O decomposition over ZrO2 and YSZ, while the presence of H2O in the system decreases N2O conversion significantly. O2 and N2O are activated at different active sites. Y-induced oxygen vacancies are active for O2 activation, whereas oxygen co-ordinatively unsaturated Zr cations (Zr-CUS) located at corners, edges, steps and kinks are responsible for N2O activation. These sites are also capable of dissociating H2O, resulting in competition between H2O and N2O. As compared with N2O, molecular O2 is easier to be activated over YSZ and ZrO2.  相似文献   

13.
The N2O decomposition activity of Fe-ZSM-5 strongly depends on the iron content and the preparation methods, including wet (WIE) and solid state ion exchanges (SSIE). The state of Fe species formed on the surface of a series of Fe-ZSM-5 catalysts containing a variety of Fe contents with respect to the preparation method and their role for N2O decomposition activity have been systematically examined. The general trend for the decomposition activity of Fe-ZSM-5-SSIE is higher than that of Fe-ZSM-5-WIE, indicating the formation of a distinctive local structure of Fe on the catalyst surface during the course of the ion-exchange procedure. Based upon the Fourier transformed Fe K-edge EXAFS spectra for the series of Fe-ZSM-5-SSIE and -WIE catalysts, most of the Fe species on the surface of Fe-ZSM-5-SSIE with high Fe loading are well dispersed in the form of oxygen-bridged binuclear Fe species. The turnover frequency (TOF) for N2O decomposition under dry and wet conditions has been confirmed assuming that Fe-ZSM-5-SSIE samples with Fe/Al = 0.20 and Fe/Al = 0.65 only contain mononuclear and binuclear Fe species, respectively, as active reaction species on their surface. The high performance of Fe-ZSM-5-SSIE may be mainly due to the formation of the binuclear Fe species onto its surface during the preparation of the catalyst.  相似文献   

14.
CO and CH4 combined oxidation tests were performed over a Pd (70 g/ft3)/Co3O4 monolithic catalyst in conditions of GHSV = 100,000 h−1 and feed composition close to that of emission from bi-fuel vehicles. The effect of SO2 (5 ppm) on CO and CH4 oxidation activity under lean condition (λ = 2) was investigated. The presence of sulphur strongly deactivated the catalyst towards methane oxidation, while the poisoning effect was less drastic in the oxidation of CO. Saturation of the Pd/Co3O4 catalytic sites via chemisorbed SO3 and/or sulphates occurred upon exposure to SO2. A treatment of regeneration to remove sulphate species was attempted by performing a heating/cooling cycle up to 900 °C in oxidizing atmosphere. Decomposition of PdO and Co3O4 phases at high temperature, above 750 °C, was observed. Moreover, sintering of Pd0 and PdO particles along with of CoO crystallites takes place.  相似文献   

15.
Coupled semiconductor (CS) Cu/CdS–TiO2/SiO2 photocatalyst was prepared using a mutli-step impregnation method. Its optical property was characterized by UV–vis spectra. BET, XRD, Raman and IR were used to study the structure of the photocatalyst. Fine CdS was found dispersed over the surface of anatase TiO2/SiO2 substrate. Chemisorption and IR analysis showed methane absorbed in the molecular state interacted weakly with the surface of catalyst, and the interaction of CO2 with CS produced various forms of absorbed CO2 species that were primarily present in the form of formate, bidentate and linear absorption species. Photocatalytic direct conversion of CH4 and CO2 was performed under the operation conditions: 373 K, 1:1 of CO2/CH4, 1 atm, space velocity of 200 h−1 and UV intensity of 20.0 mW/cm2. The conversion was 1.47% for CH4 and 0.74% for CO2 with a selectivity of acetone up to 92.3%. The reaction mechanisms were proposed based on the experimental observations.  相似文献   

16.
Kinetics of the simultaneous reduction N2O and NO by CO on CuCo2O4 has been studied. The reactants are adsorbed onto the coordination-unsaturated cations of the catalyst. The studies showed that the reactions of N2O and CO and of NO and CO occur between the adsorbed reactants on the catalyst surface; the catalyst surface is partially reduced during both these reactions. It was found that NO inhibits the reaction between N2O and CO, because N2O and NO compete for the active surface sites. The adsorption capacity of the catalyst is significantly higher for NO than for N2O and hence NO displaces N2Oads from the surface. The inhibition occurs on strongly localized sites and does not affect on the behaviour of the remaining free sites. At such blockage, the N2O reduction rate decreases in direct proportion to the amount of adsorbed NO.  相似文献   

17.
The reduction of NOx by hydrogen under lean burn conditions over Pt/Al2O3 is strongly poisoned by carbon monoxide. This is due to the strong adsorption and subsequent high coverage of CO, which significantly increases the temperature required to initiate the reaction. Even relatively small concentrations of CO dramatically reduce the maximum NOx conversions achievable. In contrast, the presence of CO has a pronounced promoting influence in the case of Pd/Al2O3. In this case, although pure H2 and pure CO are ineffective for NOx reduction under lean burn conditions, H2/CO mixtures are very effective. With a realistic (1:3) H2:CO ratio, typical of actual exhaust gas, Pd/Al2O3 is significantly more active than Pt/Al2O3, delivering 45% NOx conversion at 160 °C, compared to >15% for Pt/Al2O3 under identical conditions. The nature of the support is also critically important, with Pd/Al2O3 being much more active than Pd/SiO2. Possible mechanisms for the improved performance of Pd/Al2O3 in the presence of H2+CO are discussed.  相似文献   

18.
The effect of the pretreatment (inert, oxidative, and reducing) of Ru/γ-Al2O3 catalyst on its activity and stability in the decomposition of N2O in the absence or presence of O2, SO2, H2O and NOX was studied in the present work. Decomposition of pure N2O was slightly enhanced by the H2-pretreated catalyst (metallic Ru) compared to the O2- or He-pretreated ones, owing to a cyclic oxidation–reduction pathway of metallic Ru. The observed decrease of activity by O2 or H2O addition was reversible compared to SO2 which caused a strong, irreversible deactivation of the catalyst, irrespective of the type of pretreatment. This was attributed to the formation of stable sulphates, mainly those on RuO2 surface, which could only be removed by regeneration under reducing (H2 in He) atmosphere at temperatures of ca. 500 °C. Oxidative or inert regeneration required very high temperatures (i.e. >700 °C) in order to decompose these sulphates. A method of retaining N2O conversion activity very high (≥98%) for long reaction times is suggested and is based on frequent and short-time (ca. 10 min) regenerations of the catalyst under reducing atmosphere (ca. 5% H2 in He). The effect of co-feeding various reducing agents, such as CO or C3H6, on the N2O conversion activity in the presence of O2, SO2, H2O and NOX is negligible, mainly because they are oxidized at relatively low temperatures in the O2-rich feeds used in this study.  相似文献   

19.
Direct decomposition of nitrous oxide (N2O) on K-doped Co3O4 catalysts was examined. The K-doped Co3O4 catalyst showed a high activity even in the presence of water. In the durability test of the K-doped Co3O4 catalyst, the activity was maintained at least for 12 h. It was found that the activity of the K-doped Co3O4 catalyst strongly depended on the amount of K in the catalyst. In order to reveal the role of the K component on the catalytic activity, the catalyst was characterized by XRD, XPS, TPR and TPD. The results suggested that regeneration of the Co2+ species from the Co3+ species formed by oxidation of Co2+ with the oxygen atoms formed by N2O decomposition was promoted by the addition of K to the Co3O4 catalyst.  相似文献   

20.
通过焙烧猪骨和鸡骨获得羟磷灰石(nHAP)载体,并采用浸渍法制备Co3O4/nHAP催化剂。采用XRD、N2物理吸附-脱附、FT-IR和H2-TPR等对催化剂进行表征,在连续流动微反装置上考察催化剂催化分解N2O的性能。结果表明,相比于鸡骨源Co3O4/nHAP催化剂,以猪骨源HAP为载体的催化剂因其较大的比表面积以及较小的Co3O4粒径尺寸,提供了更多的活性位点。特别是猪骨源Co3O4/nHAP催化剂中适量的K、Na等元素促进了Co^3+到Co^2+的还原,削弱了Co-O键,使催化剂的催化活性显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号