首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Direct soldering of SiC ceramic in air at 230 °C was achieved using a Sn–9Zn–2Al alloy assisted by ultrasonic wave within seconds. Experimental results indicated that a sound metallurgical bond was formed between the SiC ceramic and Sn–9Zn–2Al alloys. The dependence of interfacial microstructure evolution on ultrasonic action duration time was investigated. Two types of interfacial structures at the interface were observed as the ultrasonic action duration time increased. An amorphous SiO2 layer was identified at the interface for ultrasonic exposures of 1 s, which was the oxide layer formed on the SiC ceramic surface during heating. A layer of amorphous alumina with a thickness of ~ 6.8 nm formed at the interface under ultrasonic action for over 4 s. The shear strength of joints could reach up to 44 MPa. The formation of the alumina layer at the interface was attributed to the redox reaction of Al from the filler metal and SiO2 on the SiC ceramic surface under the action of ultrasonic waves. The rapid interfacial reaction was principally induced by the acoustic cavitation and streaming effects at the liquid/solid interface.  相似文献   

2.
《Ceramics International》2021,47(18):25541-25550
A novel B2O3–Al2O3–SiO2 (BAS) glass filler was first developed to join Al2O3 and zirconia toughened alumina (ZTA) ceramics. The microstructure, crystallization products, and interfacial reaction layer of the joint were all studied. Detailed growth process and the microstructural evolution mechanism of aluminum borate (Al18B4O33 and Al4B2O9) crystal whiskers were revealed through controlling the joining temperature and the holding time. The results showed that the Al18B4O33 and Al4B2O9 whiskers formed at the interfaces and in the joining seam, owing to the reaction between the substrates and the BAS glass system, and the precipitation out of the glass, respectively. Finally, bonded with this BAS glass filler at 1400 °C for one hour, the joints exhibited a maximum shear strength of 42 MPa at room temperature and good mechanical performance after thermal cycling.  相似文献   

3.
《应用陶瓷进展》2013,112(6):352-357
Abstract

MgO–Al2O3–SiO2 (MAS) cordierite based glass ceramics were prepared by volume crystallisation. X-ray diffraction, Scanning electron microscopy and Energy diffraction scanning were used to investigate crystallisation behaviour and the influence of P2O5 on microstructure MAS based glass ceramics. The results showed that P5+ could promote the phase separation of MAS glass and that the glass was divided into two areas, such as Mg4Al2Ti9O25 and the containing P5+ area at <900°C. Mg4Al2Ti9O25 and Mg3(PO4)2 in the area were both advantageous to the precipitation of μ cordierite, which further transformed to α cordierite due to P5+ in the residual glassy phase. However, P5+ inhibited the presence of cordierite when the heat treatment temperature was >900°C.  相似文献   

4.
The thermal conductivity of Cu/Al2O3 bilayers prepared by a direct-bonding technique was determined. The direct-bonding process started with the pre-oxidation treatment of a Cu plate at a temperature less than 600 °C. Though a thin oxide layer was located on the surface of the plate after treatment, the oxygen solutes began to diffuse into the interior of Cu plate prior to bonding. Bonding occurred by a eutectic liquid formed at 1075 °C. No reaction interphase was observed at the Cu–Al2O3 interface. The thermal resistance of the Cu/Al2O3 interface is very low. The extremely low thermal resistance can be related to the clean interface between the two materials.  相似文献   

5.
Macro-porous SiC was fabricated without using pore-forming agents by an in situ reaction bonding process. A bonding additive, Al2O3–Y2O3–SiO2, with a low melting temperature was mixed with SiC particles and sintered at 1500 °C and 1600 °C for 1 h in Ar. Macro-porous SiC with a porosity of 32.7–45.9%, a pore size of 3.4–4.2 μm, and a relatively narrow and uniform pore size distribution was fabricated by varying the amount of bonding additive. The flexural strength of macro-porous SiC prepared at 1500 °C increased from 47.2 MPa to 71.2 MPa while the porosity decreased from 45.9% to 42.8%, respectively. When the sintering temperature of the macro-porous SiC was increased to 1600 °C, the flexural strengths were significantly reduced to 32.6–35.6 MPa, along with a reduction in porosity and pore size. The permeability of macro-porous SiC prepared at 1500 °C varied from 1.59 × 10?12 m2 to 1.26 × 10?12 m2, depending on the porosity. As the sintering temperature increased from 1500 °C to 1600 °C, the permeability decreased to less than 1.00 × 10?12 m2 because of the reduced porosity and average pore size. The electrical resistivity of macro-porous SiC prepared at 1500 °C and 1600 °C varied from 2.7 × 108 Ω-cm to 1.4 × 109 Ω-cm and from 1.3 × 108 Ω-cm to 1.7 × 109 Ω-cm, respectively, with increasing volume percent of bonding additives. The relatively high electrical resistivity was apparently due to neck bonding phase between SiC particles formed by phases consisting of Y2Si2O7, YAG, and residual Al2O3.  相似文献   

6.
Using CaO, Y2O3, Al2O3, and SiO2 micron-powders as raw materials, CaO–Y2O3–Al2O3–SiO2 (CYAS) glass was prepared using water cooling method. The coefficient of thermal expansion (CTE) of CYAS glass was found to be 4.3 × 10?6/K, which was similar to that of SiCf/SiC composites. The glass transition temperature of CYAS glass was determined to be 723.1 °C. With the increase of temperature, CYAS glass powder exhibited crystallization and sintering behaviors. Below 1300 °C, yttrium disilicate, mullite and cristobalite crystals gradually precipitated out. However, above 1300 °C, the crystals started diminishing, eventually disappearing after heat treatment at 1400 °C. CYAS glass powder was used to join SiCf/SiC composites. The results showed that the joint gradually densified as brazing temperature increased, while the phase in the interlayer was consistent with that of glass powder heated at the same temperature. The holding time had little effect on phase composition of the joint, while longer holding time was more beneficial to the elimination of residual bubbles in the interlayer and promoted the infiltration of glass solder into SiCf/SiC composites. The joint brazed at 1400 °C/30 min was dense and defect-free with the highest shear strength of about 57.1 MPa.  相似文献   

7.
Bismuth borate zinc glass, 50Bi2O3–30B2O3–20ZnO (mol.%), was used as a braze intended to join sapphire. Thermal properties of the glass were all experimentally determined. The wettability of the glass on sapphire was investigated. The contact angle not greater than 11.3° was obtained in air at temperatures of ≥700 °C. Subsequently, sapphire was successfully joined to themselves at 700 °C for 20 min. The microstructure of the joint was studied and the interfacial phases were characterized. The results showed that the ZnAl2O4 phase was formed as a result of the reaction between the sapphire substrate and ZnO from the glass. The mechanical integrity of the joints was investigated. The joints with an average room shear strength of 70 MPa were achieved. The fracture analysis indicated that the fracture occurred within the glass interlayer rather than at the sapphire/glass interface, hence indicating a good bonding of the glass with sapphire.  相似文献   

8.
《Ceramics International》2020,46(17):27046-27056
In this study, Y2O3–Al2O3–SiO2 (YAS) glass was prepared from Y2O3, Al2O3, and SiO2 micron powders. Thermal expansion coefficient of as-obtained YAS glass was about 3.9 × 10−6, matching-well with that of SiCf/SiC composites. SiCf/SiC composites were then brazed under pressure-less state by YAS glass and effects of brazing temperature on microstructures and properties of resulting joints were investigated. The results showed that glass powder in brazed seam sintered and precipitated yttrium disilicate, cristobalite, and mullite crystals after heat treatment. With the increase in temperature, joint layer gradually densified and got tightly bonded to SiCf/SiC composite. The optimal brazing parameter was recorded as 1400 °C/30 min and shear strength of the joint was 51.7 MPa. Formation mechanism of glass-ceramic joints was proposed based on combined analysis of microstructure and fracture morphology of joints brazed at different temperatures. Thermal shock resistance testing of joints was also carried out, which depicted decline in shear strength with the increase of thermal shock times. The strength of the joint after three successive thermal shock cycles at 1200 °C was 35.6 MPa, equivalent to 69% of that without thermal shock.  相似文献   

9.
《Ceramics International》2020,46(5):5575-5585
50Bi2O3–35B2O3–15ZnO (mol. %) glass referred to as Bi50 glass, was used to braze Al2O3 ceramics. The phase transformations and wettability of the Bi50 glass on Al2O3 substrates at different temperatures were investigated. The results showed that the chemical compatibility of Bi50 glass and Al2O3 substrates at 650 °C was excellent. However, Al2O3/Al2O3 joints having a considerable volume fraction of pores and unbonding were obtained when the joining procedures were carried out by a one-step brazing method. Based on the experiments and simulation results, the prime determinants responsible for the presence of the pores and unbonding within the brazing joints can be divided into two aspects: (i) the intrinsic causes leading to the formation of closed pores (ii) the external factors causing the failure of pores and glass separation. Ultimately, an advanced joining procedure named two-step brazing was proposed, and joints nearly free of defects were acquired.  相似文献   

10.
A novel CaO-Li2O-Al2O3-SiO2 (CLAS) glass was developed for the joining of porous Si3N4 and dense Si3N4. A multiphase interlayer consisting of CaAl2Si2O8, LiAlSi2O6 and CaSiO3 phases was formed in joint, which possessed matched CTE with the Si3N4 substrates. In addition, the infiltrated layer with bilayer structure in the porous Si3N4 substrate was observed. The effects of joining temperature and cooling rate on microstructure, phase evolution and shear strength of joints were studied carefully. The results showed that the kinds of precipitated phases remained invariable with the joining temperature increased, but the crystallinity in the interlayer was improved remarkably as the cooling rate reduced. The maximum shear strength of 45 MPa was obtained when the joining temperature and cooling rate were 1100 °C and 5 °C/min, respectively. Moreover, fracture during the shear test occurred mainly within porous Si3N4 side, indicating superior joining of dense Si3N4/glass-ceramic/porous Si3N4.  相似文献   

11.
Al2O3–CaO–Cr2O3 castables are required for various furnaces linings due to their excellent corrosion resistance. However, toxic and water-soluble Cr(VI) could be generated in these linings during service. In this study Al2O3–CaO–Cr2O3 castables were prepared and heated at 300–1500 °C in air and coke bed to simulate actual service conditions. The formations of various phases were investigated by XRD and SEM-EDS. The Cr(VI) compounds CaCrO4 and Ca4Al6CrO16 formed in air at 300–900 °C and 900–1300 °C respectively, while C12A7 and CA2 were generated rather than forming Cr(VI) compounds in coke bed at 700–1300 °C. However, at 1500 °C, nearly all the chromium existed in the form of (Al1-xCrx)2O3 solid solution in both atmosphere. As a result, the specimens treated in air contained 185.0–1697.8 mg/kg of Cr(VI) at 500–1300 °C but only 17.2 mg/kg of Cr(VI) at 1500 °C, whereas specimens treated in coke bed exhibited extremely low Cr(VI) concentration in the whole temperature range studied. Moreover, in coke bed, the mutual diffusion between Cr2O3 and Al2O3 was suppressed and a trace of Cr2O3 would even be reduced to form chromium-containing carbides on its surface, which would hindered the sintering process and hence lower the density as well as strength of the castables.  相似文献   

12.
The glass structure, wetting behavior and crystallization of BaO–Al2O3–B2O3–SiO2 system glass containing 2–10 mol% Al2O3 were investigated. The introduction of Al2O3 caused the conversion of [BO3] units and [BO4] units to each other and it played as glass network former when the content was up to 10 mol%, accompanied by [BO4]  [BO3]. The stability of the glass improved first and then decreased as Al2O3 increased from 2 to 10 mol%, the glass with 5 mol% Al2O3 being the most stable one. The wetting behavior of the glasses indicates that excess Al2O3 leads to high sealing temperature. The glass containing 5 mol% Al2O3 characterized by a lower sealing temperature is suitable for SOFC sealing. Al2O3 improves the crystallization temperature of the glass. The crystal phases in the reheated glasses are mainly composed of Ba2Si3O8, BaSiO3, BaB2O4 and BaAl2Si2O8. Al2O3 helps the crystallization of BaSiO3 and BaAl2Si2O8.  相似文献   

13.
《Ceramics International》2023,49(20):32835-32842
In this work, crystallization, thermal expansion and wetting behavior of ZnO–Al2O3–SiO2 (ZAS) glass were first investigated. The results showed that ZnAl2O4 was precipitated from ZAS glass after crystallization treatment. Crystallization increased the coefficient of thermal expansion (CTE) of ZAS glass ceramic due to the high CTE of ZnAl2O4. In addition, ZAS glass exhibited good wettability on the surface of MgAl2O4 substrate. On this basis, ZAS glass was used to join MgAl2O4 ceramic, and the microstructure and mechanical properties of joints obtained with different cooling methods were investigated. The flexural strength of joints was related to the content of ZnAl2O4 crystals in the brazing seams. Additional nucleation and crystallization treatment during cooling process improved the crystallinity of brazing seam, resulting in better matching of the CTE of brazing seam with that of MgAl2O4 ceramic. The maximum flexural strength of joints reached 201 MPa, which was equivalent to the strength of MgAl2O4 ceramic.  相似文献   

14.
《Ceramics International》2016,42(6):6924-6934
Al2O3 ceramic was reliably joined to TiAl alloy by active brazing using Ag–Cu–Ti filler metal, and the effects of brazing temperature, holding time, and Ti content on the microstructure and mechanical properties of Al2O3/TiAl joints were investigated. The typical interfacial microstructure of joints brazed at 880 °C for 10 min was Al2O3/Ti3(Cu,Al)3O/Ag(s.s)+AlCu2Ti+Ti(Cu,Al)+Cu(s.s)/AlCu2Ti+AlCuTi/TiAl alloy. With increasing brazing temperature and time, the thickness of the Ti3(Cu,Al)3O reaction layer increased, and the blocky AlCu2Ti compounds aggregated and grew gradually. The Ti dissolved from the TiAl substrate was sufficient to react with Al2O3 ceramic to form a thin Ti3(Cu,Al)3O layer when Ag–Cu eutectic alloy was used, but the dissolution of TiAl alloy was inhibited with an increase in Ti content in the brazing filler. Ti and Al dissolved from the TiAl alloy had a strong influence on the microstructural evolution of the Al2O3/TiAl joints, and the mechanism is discussed. The maximum shear strength was 94 MPa when the joints were brazed with commercial Ag–Cu–Ti filler metal, while it reached 102 MPa for the joint brazed with Ag–Cu+2 wt% TiH2 at 880 °C for 10 min. Fractures propagated primarily in the Al2O3 substrate and partially along the reaction layer.  相似文献   

15.
《应用陶瓷进展》2013,112(4):227-231
Abstract

Glass ceramics in the Li2O–Al2O3–SiO2 system have been synthesised to produce bulk materials grown in a glass phase via quenching followed by controlled crystallisation. The crystallisation and microstructure of Li2O–Al2O3–SiO2 (LAS) glass–ceramic with nucleating agents (B2O3 and/or P2O5) are investigated by differential thermal analysis, X-ray diffraction and scanning electron microscopy and the effects of B2O3 and P2O5 on the crystallisation of LAS glass are also analysed. The introduction of both B2O3 and P2O5 promotes the crystallisation of LAS glass by decreasing the crystallisation temperature and adjusting the crystallisation kinetic parameters, allows a direct formation of β spodumene phase and as a result, increases the crystallinity of the LAS glass ceramic. Microstructural observations show that the randomly oriented, nanometre sized crystalline is found with residual glass concentrated at crystallite boundaries. Furthermore, it is interesting that codoping of B2O3 and P2O5 creates not much effect on the crystallisation temperature. The dielectric properties of the glass–ceramics formed through controlled crystallisation have a strong dependence on the phases that are developed during heat treatment. The dielectric constant is continuously increased and the dielectric loss is decreased with addition of additives where mobile alkali metal ions (e.g. Li+) are incorporated in a crystal phase and minimise the residual glass phase.  相似文献   

16.
《Ceramics International》2023,49(20):33188-33196
Nowadays, Y2O3–Al2O3–SiO2 (YAS) glass joining is considered to be a promising scheme for nuclear-grade continuous silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC). CaO has great potential for nuclear applications since it has low reactivity and low decay rate under nuclear irradiation. In this paper, the effect of CaO doping on the structure, thermophysical properties, and crystallization behavior of YAS glass was systematically studied. As the CaO doping content increased, the number of bridge oxygens and the viscosity at high temperatures reduced gradually. After heat treatment at 1400 °C, the main phases in YAS glass were β-Y2Si2O7, mullite, and SiO2 (coexistence of crystalline and glass phases), while that with 3.0% CaO doping turned into a single glassy phase under the same treatment conditions. Moreover, a structural model and the modification mechanism were proposed, which provided a theoretical basis for the subsequent component design and optimization.  相似文献   

17.
《Ceramics International》2022,48(13):18551-18557
In this study, Al2O3 ceramic and Cu bars were brazed with newly designed Ag–Cu–Ti(ABA)+Zn composite fillers. Systematic analysis of the microstructure of the brazed joints indicated that the volatilization of Zn atoms during the brazing process could promote the spreading of liquid brazing fillers on the surface of the Al2O3 ceramic, resulting in a uniform dendritic interfacial structure. The typical interfacial structure was an Al2O3/TiO/(Cu, Al)3Ti3O+Ag(s, s)/Cu interface. Notably, the tensile strength was improved to 20.89 MPa for Al2O3/Cu joint brazed with ABA+Zn composite fillers at 900 °C for 20 min, approximately 67.6% higher than the sample brazed without Zn foil. In this case, the fracture model was straight and sharp-angled inside the Al2O3 ceramic. In addition, the joint strength decreased with increased brazing temperatures from 900 to 940 °C.  相似文献   

18.
The mechanical behavior and microstructure of highly densified, spherically shaped, polycrystalline Al2O3–YSZ composites, processed from pseudoboehmite powders by sol–gel is reported here. Processing was carried out by combining nanometric sized α-Al2O3 (120 nm) seeds and YSZ particles of tetragonal structure. The YSZ particles were homogeneously distributed in a coarse-grained matrix of alumina, both inside grains and along grain boundaries. Fracture surfaces, achieved by impact tests showed toughening effects of the zirconia particles. The tetragonality of the YSZ phase stability even after fracture events and fracture toughness measurements by Vickers indentation, where the crack tip interacts with YSZ particles, are all provided and discussed. The local mechanical properties, such as elastic modulus, indentation hardness and the onset of plastic deformation or fracture contact pressure of both YSZ particles and the Al2O3 matrix were quantified by nanoindentation. Evidence of coercive contact pressure was observed in YSZ from indentation stress–strain curves.  相似文献   

19.
20.
《Ceramics International》2022,48(17):24517-24522
Diffusion of Ag species into the surface layers of the MgO–Al2O3–TiO2–SiO2 glass stimulates the crystallization processes therein during subsequent thermal treatment. It was found that the silver doping significantly increases the microhardness of glass and glass ceramics. The effect of the Ag diffusion and the subsequent high-temperature treatment (T > Tg) on the structure and luminescence properties of the MgO–Al2O3–TiO2–SiO2 glass was studied. The thermal evolution, structure and properties of the glass and glass ceramics were investigated by the DSC method, XRD analysis and luminescence spectroscopy. It was found that the Ag diffusion into the surface layers leads to the formation of numerous different luminescent molecular Agn clusters. The MgO–Al2O3–TiO2–SiO2 glass and glass ceramics subjected to the Ag diffusion can operate as effective down-converters of the radiation demonstrating the effective transformation of UV and blue light into the radiation of red and NIR spectral range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号