首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B4C-TiB2-SiC composites toughened by (TiB2-SiC) agglomerates were prepared via reactive hot pressing with B4C and TiSi2 as raw materials. Phase composition, microstructure, and mechanical properties of the fabricated composites were investigated. The function of (TiB2-SiC) agglomerates was analyzed, and the strengthening and toughening mechanism were also discussed. Results indicated that some of the in situ formed TiB2 and SiC were interlocked to form special (TiB2-SiC) agglomerates in the matrix. The good comprehensive performances of 510 MPa flexural strength, 5.84 MPa·m1/2 fracture toughness, and 31.93 GPa hardness were obtained in the composites fabricated with 30 wt% TiSi2. The in situ introduced fine TiB2 and SiC grains refined the grains of B4C due to the pinning effect, which enhanced the strength. The special (TiB2-SiC) agglomerates and the existing toughening phenomena such as crack deflection, branching, and microcrack regions induced by the mismatch of thermal expansion coefficients, had cumulative effects on improving the fracture toughness.  相似文献   

2.
SiC–TiB2 composites with up to 50 vol% TiB2 were fabricated by in-situ reaction between TiO2, B4C and C. The densification of the uniaxially pressed samples was done using pressureless sintering in the presence of sintering aids consisting of Al2O3 and Y2O3. The influence of the volume fraction of TiB2 and sintering temperature on density and fracture toughness was examined. It was found that fracture toughness is strongly affected by the volume fraction of TiB2. The presence of TiB2 particles suppresses the grain growth of SiC and facilitates different toughening mechanisms to operate which, in turn, increases fracture toughness of the composite. The highest value for fracture toughness of 5.7 MPa m1/2 was measured in samples with 30 vol% TiB2 sintered at 1940 °C.  相似文献   

3.
TiB2–AlN–SiC (TAS) ternary composites were prepared by reactive hot pressing at 2000°C for 60 min in an Ar atmosphere using TiH2, Si, Al, B4C, BN and C as raw powders. The phase composition was determined to be TiB2, AlN and β-SiC by XRD. The distribution of elements Al and Si were not homogeneous, which shows that to obtain a homogeneous solid solution of AlN and SiC in the composites by the proposed reaction temperatures higher than 2000°C or time duration longer than 60 min are needed. The higher fracture toughness (6·35±0·74 MPa·m1/2 and 6·49±0·73 MPa·m1/2) was obtained in samples with equal molar contents of AlN and SiC (TAS-2 and TAS-5) in the TAS composites. The highest fracture strength (470±16 MPa) was obtained in TAS-3 sample, in which the volume ratio of TiB2/(AlN+SiC) was the nearest to 1 and there was finer co-continuous microstructure. ©  相似文献   

4.
《Ceramics International》2016,42(6):7347-7352
MAX phase Ti3AlC2 was chosen as a novel sintering aid to prepare electrically conductive B4C composites with high strength and toughness. Dense B4C composites can be obtained at a hot-pressing temperature as low as 1850 °C with 15 vol% Ti3AlC2. The enhanced sinterability was mainly ascribed to the in situ reactions between B4C and Ti3AlC2 as well as the liquid phase decomposed from Ti3AlC2. Both the Vickers hardness and fracture toughness increase with increasing Ti3AlC2 amount, and high hardness and toughness values of 28.5 GPa and 7.02 MPa m−1/2 respectively were achieved for B4C composites sintered with 20 vol% Ti3AlC2 at 1900 °C. Crack deflection by homogenously distributed TiB2 particles was identified as the main toughening mechanism. Besides, B4C composites sintered with Ti3AlC2 show significantly improved electrical conductivity due to the percolation of highly conductive TiB2 phase, which could enhance the machinability of B4C composites largely by allowing electrical discharge machining.  相似文献   

5.
Boron carbide (B4C)/TiC/Mo ceramic composites with different content of TiC were produced by hot pressing. The effect of TiC content on the microstructure and mechanical properties of the composites has been studied. Results showed that chemical reaction took place for this system during hot pressing sintering, and resulted in a B4C/TiB2/Mo composite with high density and improved mechanical properties compared to monolithic B4C ceramic. Densification rates of the B4C/TiC/Mo composites were found to be affected by additions of TiC. Increasing TiC content led to increase in the densification rates of the composites. The sintering temperature was lowered from 2150 °C for monolithic B4C to 1950 °C for the B4C/TiC/Mo composites. The fracture toughness, flexural strength, and hardness of the composites increased with increasing TiC content up to 10 wt.%. The maximum values of fracture toughness, flexural strength, and hardness are 4.3 MPa m1/2, 695 MPa, and 25.0 GPa, respectively.  相似文献   

6.
Tantalum diboride – boron suboxide ceramic composites were densified by spark plasma sintering at 1900 °C. Strength and fracture toughness of these bulk composites at room temperature were 490 MPa and 4 MPa m1/2, respectively. Flexural strength of B6O–TaB2 ceramics increased up to 800 °C and remained unchanged up to 1600 °C. At 1800 °C a rapid decrease in strength down to 300 MPa was observed and was accompanied by change in fracture mechanisms suggestive of decomposition of boron suboxide grains. Fracture toughness of B6O–TaB2 composites showed a minimum at 800 °C, suggestive a relaxation of thermal stresses generated from the mismatch in coefficients of thermal expansion.Flexural strength at elevated temperatures for bulk TaB2 reference sample was also investigated.Results suggest that formation of composite provides additional strengthening/toughening as in all cases flexural strength and fracture toughness of the B6O–TaB2 ceramic composite was higher than that reported for B6O monoliths.  相似文献   

7.
A polycrystalline eutectic B4C–TiB2 composite was prepared by spark plasma sintering. The starting eutectic powder was obtained by mechanical grinding of the directionally solidified eutectic B4C–TiB2 alloy. The microstructure of the polycrystalline composite exhibited randomly oriented eutectic grains with an average size of about 50–100 μm. Eutectic grains consisted of boron carbide matrix reinforced by titanium diboride inclusions. The secondary eutectic structure in the grain boundary is formed at sintering temperature higher than 1700 °C. XRD analysis revealed that the eutectic B4C–TiB2 composite consist mainly of B4C and TiB2 phases. The measured Vickers hardness was in the range of 32.35–54.18 GPa and the average fracture toughness of the samples was as high as 4.81 MPa m1/2. The bending strengths of the composite evaluated at room temperature and at 1600 °C were 230 and 190 MPa, respectively.  相似文献   

8.
Titanium carbide ceramics with different contents of boron or B4C were pressureless sintered at temperatures from 2100 °C to 2300 °C. Due to the removal of oxide impurities, the onset temperature for TiC grain growth was lowered to 2100 °C and near fully dense (>98%) TiC ceramics were obtained at 2200 °C. TiB2 platelets and graphite flakes were formed during sintering process. They retard TiC grains from fast growth and reduced the entrapped pores in TiC grains. Therefore, TiC doped with boron or B4C could achieve higher relative density (>99.5%) than pure TiC (96.67%) at 2300 °C. Mechanical properties including Vickers’ hardness, fracture toughness and flexural strength were investigated. Highest fracture toughness (4.79 ± 0.50 MPa m1/2) and flexural strength (552.6 ± 23.1 MPa) have been obtained when TiC mixed with B4C by the mass ratio of 100:5.11. The main toughening mechanisms include crack deflection and pull-out of TiB2 platelets.  相似文献   

9.
Samples of B4C–TiB2 eutectic are laser processed to produce composites with varying microstructural scales. The eutectic materials exhibit both load dependent and load independent hardness regimes with a transition occurring between 4 and 5 N indentation load. The load-independent hardness of eutectics with a microstructural scale smaller than 1 μm is about 31 GPa, and the indentation fracture toughness (5–10 N indenter load) of the eutectics is 2.47–4.76 MPa m1/2. Indentation-induced cracks are deflected by TiB2 lamellae, and indentation-induced spallation is reduced in the B4C–TiB2 eutectic compared to monolithic B4C. Indentation-induced amorphization in monolithic B4C and the B4C phase of the eutectic is detected using Raman spectroscopy. Sub-surface damage is observed using TEM, including microcracking and amorphization damage in B4C and B4C–TiB2 eutectics. Dislocations are observed in the TiB2 phase of eutectics with an interlamellar spacing of 1.9 μm.  相似文献   

10.
Boron carbide (B4C)-based ceramics were pressureless sintered to a relative density of 96.1% at 2150 °C, with the co-incorporation of tungsten carbide and pyrolytic carbon. The as-batched boron carbide power was 7.89 m2 g?1 in surface area. A level of fracture toughness as high as 5.80 ± 0.12 MPa m1/2 was achieved in the BW-6C composite. Sintering aids of carbon and tungsten boride were formed by an in situ reaction. The toughness improvement was attributed to the presence of thermal residual stress as well as the W2B5 platelets. The thermal conductivity and thermal expansivity of the BW-6C composite as a function of temperature are also reported in this work. Our current study demonstrated that the B4C–W2B5 composites could be potential candidate materials for structural applications.  相似文献   

11.
SiC whisker reinfored carbide-based composites were fabricated by a reactive infiltration method by using Si as the infiltrate. Rice husks (RHs) were pyrolyzed to SiC whiskers, particles and amorphous carbon, and were then mixed with different contents of B4C as well as Mo powders. The mixtures were molded to porous preforms for the infiltration. The SiC whiskers and particles in the preform remained in the composite. Molten Si reacted with the amorphous carbon, B4C as well as Mo in the preform during the infiltration, forming newly SiC, B12(C,Si,B)3 as well as MoSi2. The upper values of elastic modulus, hardness and fracture toughness of the composites are 297.8 GPa, 16.8 ± 0.8 GPa, and 3.8 ± 0.2 MPa m1/2, respectively. The influence of the phase composition of the composites on the mechanical properties and the fracture mechanism are discussed.  相似文献   

12.
《Ceramics International》2017,43(16):13047-13054
Zr-Al-C was in-situ synthesized as a toughening component in ZrB2-SiC ceramics by spark plasma sintering (SPS) ball-milled ZrB2-based composite powders with SiC and graphite powders. The phase composition of Zr-Al-C toughened ZrB2-SiC (ZSA) composite ceramics fabricated through the two-step process (ball milling and SPS) did not change dramatically with varying content of Zr-Al-C which shows a major phase of Zr3Al4C6. With increasing Zr-Al-C content, the fracture toughness of the ZSA ceramics initially increased and then decreased when the content reached 40 vol%. The ZSA ceramic with 30 vol% Zr-Al-C exhibited a maximum fracture toughness value of 5.96 ± 0.31 MPa m1/2, about 22% higher than that of the ZSA ceramic with 10 vol% Zr-Al-C. When the Zr-Al-C content goes beyond 30 vol%, the higher open porosity and component agglomeration led to the relatively lower fracture toughness. Crack deflection and bridging resulted from the weak interface bonding between Zr-Al-C and matrix phases and the weak internal layers of Zr-Al-C crystals, leading to longer crack paths and, hence, the toughened ZSA composite ceramics. Compared to the one-step in-situ synthesis process of Zr-Al-C and the direct incorporation process of synthesized Zr-Al-C grains, the two-step in-situ synthesis process not only led to the more uniform distribution of different components but also resulted in a much larger size of Zr-Al-C grains with a large aspect ratio causing longer crack propagation path as the result of crack deflection and bridging. The larger Zr-Al-C grains combined with the more homogeneous microstructure achieve the most substantial toughening of the ZSA composite ceramics. This work points out a promising approach to control and optimize the microstructure and improve the fracture toughness of ZrB2-SiC composite ceramics by selecting the incorporation process of compound reinforcement components.  相似文献   

13.
《Ceramics International》2015,41(7):8936-8944
Monolithic B4C ceramics and B4C–CNT composites were prepared by spark plasma sintering (SPS). The influence of particle size, heating rate, and CNT addition on sintering behavior, microstructure and mechanical properties were studied. Two different B4C powders were used to examine the effect of particle size. The effect of heating rate on monolithic B4C was investigated by applying three different heating rates (75, 150 and 225 °C/min). Moreover, in order to evaluate the effect of CNT addition, B4C–CNT (0.5–3 mass%) composites were also produced. Fully dense monolithic B4C ceramics were obtained by using heating rate of 75 °C/min. Vickers hardness value increased with increasing CNT content, and B4C–CNT composite with 3 mass% CNTs had the highest hardness value of 32.8 GPa. Addition of CNTs and increase in heating rate had a positive effect on the fracture toughness and the highest fracture toughness value, 5.9 MPa m1/2, was achieved in composite with 3 mass% CNTs.  相似文献   

14.
《Ceramics International》2017,43(2):1904-1910
High-performance B4C–SiC nanocomposites with intergranular/intragranular structure were fabricated through spark plasma sintering assisted by mechanochemistry with B4C, Si and graphite powders as raw materials. Given their unique densification behaviour, two sudden shrinkages in the densification curve were observed at two very narrow temperature ranges (1000–1040 °C and 1600–1700 °C). The first sudden shrinkage was attributed to the volume change in SiC resulting from disorder–order transformation of the SiC crystal structure. The other sudden shrinkage was attributed to the accelerated densification rate resulting from the disorder–order transformation of the crystal structure. The high sintering activity of the synthesised powders could be utilised sufficiently because of the high heating rate, so dense B4C–SiC nanocomposites were obtained at 1700 °C. In addition, the combination of high heating rate and the disordered feature of the synthesised powders prompted the formation of intergranular/intragranular structure (some SiC particles were homogeneously dispersed amongst B4C grains and some nanosized B4C and SiC particles were embedded into B4C grains), which could effectively improve the fracture toughness of the composites. The relative density, Vickers hardness and fracture toughness of the samples sintered at 1800 °C reached 99.2±0.4%, 35.8±0.9 GPa and 6.8±0.2 MPa m1/2, respectively. Spark plasma sintering assisted by mechanochemistry is a superior and reasonable route for preparing B4C–SiC composites.  相似文献   

15.
B6O/TiB2 composites with varying compositions were produced by FAST/SPS at temperatures between 1850 and 1900 °C following a non-reactive or a reactive sintering route. The densification, phase and microstructure formation and the mechanical and thermal properties were investigated. The comparison to an also investigated pure B6O material showed that the addition of TiB2 in a non-reactive sintering route promotes the B6O densification. Further improvement was obtained by sintering reactive B–TiO2 mixtures which also results in materials with a finer grain size and thus in enhanced mechanical properties. The fracture toughness was significantly improved in all composites and is up to 4.0 MPa m1/2 (SEVNB) and 2.6–5.0 MPa m1/2 (IF method) while simultaneously a high hardness of up to 36 GPa (HV0.4) and 28 GPa (HV5) could be preserved. The high temperature properties at 1000 °C of hardness, thermal conductivity and CTE were up to 20 GPa, 18 W/mK and 6.63 × 10?6/K, respectively.  相似文献   

16.
《Ceramics International》2016,42(16):18718-18723
Titanium diboride (TiB2) is a ceramic material with high mechanical resistance, chemical stability, and hardness at high temperatures. Sintering this material requires high temperatures and long sintering times. Non-conventional sintering techniques such as spark plasma sintering (SPS) can densify materials considered difficult to sinter. In this study, TiB2–AIN (aluminum nitride) composites were sintered by using the SPS technique at different sintering temperatures (1500 °C, 1600 °C, 1700 °C, 1800 °C, and 1900 °C). x-ray diffraction was used to identify the phases in the composites. mechanical properties such as hardness and indentation fracture toughness was obtained using a vickers indenter. Different toughening mechanisms were identified, and good densification results were obtained using shorter times and lower temperatures than those previously reported.  相似文献   

17.
B4C-SiC composites with fine grains were fabricated with hot-pressing pyrolyzed mixtures of polycarbosilane-coated B4C powder without or with the addition of Si at 1950 °C for 1 h under the pressure of 30 MPa. SiC derived from PCS promoted the densification of B4C effectively and enhanced the fracture toughness of the composites. The sinterability and mechanical properties of the composites could be further improved by the addition of Si due to the formation of liquid Si and the elimination of free carbon during sintering. The relative density, Vickers hardness and fracture toughness of the composites prepared with PCS and 8 wt% Si reached 99.1%, 33.5 GPa, and 5.57 MPa m1/2, respectively. A number of layered structures and dislocations were observed in the B4C-SiC composites. The complicated microstructure and crack bridging by homogeneously dispersed SiC grains as well as crack deflection by SiC nanoparticles may be responsible for the improvement in toughness.  相似文献   

18.
In this work, we systematically studied the effects of powder characteristics (B4C, TiC and Si powders) on the existential form of toughening phases (SiC and TiB2) as well as the overall microstructure and properties of B4C–TiB2–SiC composites fabricated by reactive hot pressing. The particle size of the TiC powder plays a largely determining role in the development of novel toughening phases, the TiB2–SiC composite structure, that are formed in the B4C matrix, while the Si particle size affects the agglomerate level of the SiC phase. The TiB2–SiC composite structure and SiC agglomerates enhance the fracture toughness, but decrease the flexural strength. Both the microstructure and mechanical properties of B4C–TiB2–SiC composites can be effectively tuned by regulating the combinations of the particle sizes of the starting powders. The B4C–TiB2–SiC composites demonstrate flexural strength, fracture toughness and Vickers hardness in the respective range of 567–632 MPa, 5.11–6.38 MPa m1/2, and 34.8–35.6 GPa.  相似文献   

19.
SiC ceramics were reaction joined in the temperature range of 1450–1800 °C using TiB2-based composites starting from four types of joining materials, namely Ti–BN, Ti–B4C, Ti–BN–Al and Ti–B4C–Si. XRD analysis and microstructure examination were carried out on SiC joints. It is found that the former two joining materials do not yield good bond for SiC ceramics at temperatures up to 1600 °C. However, Ti–BN–Al system results in the connection of SiC substrates at 1450 °C by the formation of TiB2–AlN composite. Furthermore, nearly dense SiC joints with crack-free interface have been produced from Ti–BN–Al and Ti–B4C–Si systems at 1800 °C, i.e. joints TBNA80 and TBCS80, whose average bending strengths are measured to be 65 MPa and 142 MPa, respectively. The joining mechanisms involved are also discussed.  相似文献   

20.
《Ceramics International》2017,43(5):4062-4067
The resorcinol-formaldehyde (RF) gel-casting system is employed for the first time to fabricate a hierarchical porous B4C/C preform, which was subsequently used for the fabrication of reaction bonded boron carbide (RBBC) composites via a liquid silicon infiltration process. The effect of the carbon content and carbon structures of this perform on the microstructures and mechanical properties of B4C/C preform and the resultant RBBC composites is reported. The B4C/C preform (16 wt% carbon) exhibit a strength of 34±1 MPa. The obtained RBBC composites shown uniform microstructure is consisted of SiC particles bonded boron carbide scaffold and an interpenetrating residual silicon phase. The Vickers hardness, flexural strength and fracture toughness of the RBBC composites (16 wt% carbon) are 24 GPa, 452 MPa and 4.32 MPa m1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号