首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The installation of domestic rooftop photovoltaic cells (PVs) are on the rise due to feed-in tariff and changes driven by environmental concerns. Even though the increase in the PV installation is gradual, their locations and ratings are often random. Therefore, such single-phase bi-directional power flow can have adverse effect on the voltage imbalance of a three-phase distribution network. In this paper, a voltage imbalance sensitivity analysis and stochastic evaluation based on the ratings and locations of single-phase grid-connected rooftop PVs in a residential low voltage distribution network are presented. The stochastic evaluation, based on Monte Carlo method, predicts a failure index of non-standard voltage imbalance in the network in presence of PVs. Some improvement methods are discussed and a new improvement method based on PV converter control is proposed.  相似文献   

2.
With more and more distributed photovoltaic (PV) plants access to the distribution system, whose structure is changing and becoming an active network. The traditional methods of voltage regulation may hardly adapt to this new situation. To address this problem, this paper presents a coordinated control method of distributed energy storage systems (DESSs) for voltage regulation in a distribution network. The influence of the voltage caused by the PV plant is analyzed in a simple distribution feeder at first. The voltage regulation areas corresponding to DESSs are divided by calculating and comparing the voltage sensitivity matrix. Then, a coordinated voltage control strategy is proposed for the DESSs. Finally, the simulation results of the IEEE 33-bus radial distribution network verify the effectiveness of the proposed coordinated control method.  相似文献   

3.
《继电器》2018,(2)
With more and more distributed photovoltaic (PV) plants access to the distribution system, whose structure is changing and becoming an active network. The traditional methods of voltage regulation may hardly adapt to this new situation. To address this problem, this paper presents a coordinated control method of distributed energy storage systems (DESSs) for voltage regulation in a distribution network. The influence of the voltage caused by the PV plant is analyzed in a simple distribution feeder at first. The voltage regulation areas corresponding to DESSs are divided by calculating and comparing the voltage sensitivity matrix. Then, a coordinated voltage control strategy is proposed for the DESSs. Finally, the simulation results of the IEEE 33-bus radial distribution network verify the effectiveness of the proposed coordinated control method.  相似文献   

4.
Distributed energy resources (DER) on the demand side have been fast growing, which could boost energy resilience by uninterruptedly supplying the commercial and residential sectors in the form of islanded microgrids when the utility electricity grid is out of service. Nevertheless, simply applying the centralized hierarchical control strategies, traditionally used for utility electricity grids, onto the islanded microgrids would encounter several critical issues. For instance, the control goals in secondary and tertiary control could be activated tardily, the single-point fault could cause critical system failure, and the properties of dynamic plug and play would be hard to achieve. To this end, decentralized and distributed control approaches have been explored to cope with the issues. Specifically, compared to the centralized hierarchical control, decentralized and distributed control strategies can (i) respond to disturbances more promptly, enhancing the performance of islanded microgrids with limited resources; (ii) guarantee system stability especially when a fault occurs and certain DERs are disconnected from the network; and (iii) facilitate deeper penetration of DERs in the microgrid, owning to the low computational complexity and sparse communication network. In this article, the common approaches for decentralized and distributed control are reviewed, and the current design trends and critical technical challenges are discussed to offer a comprehensive understanding of decentralized and distributed controlled microgrids.  相似文献   

5.
With more and more distributed photovoltaic (PV) plants access to the distribution system, whose structure is changing and becoming an active network. The traditional methods of voltage regulation may hardly adapt to this new situation. To address this problem, this paper presents a coordinated control method of distributed energy storage systems (DESSs) for voltage regulation in a distribution network. The influence of the voltage caused by the PV plant is analyzed in a simple distribution feeder at first. The voltage regulation areas corresponding to DESSs are divided by calculating and comparing the voltage sensitivity matrix. Then, a coordinated voltage control strategy is proposed for the DESSs. Finally, the simulation results of the IEEE 33-bus radial distribution network verify the effectiveness of the proposed coordinated control method.  相似文献   

6.
Recently, renewable energy technologies such as wind turbine generators and photovoltaic systems have been introduced as distributed generation. The connection of large number of distributed generators causes voltage deviation beyond the statutory range in a distribution system. In this paper, a methodology for voltage control in proposed by using the tap changing transformers and the inverters interfaced with the distributed generators. In the proposed method, information of the voltage and power is collected via a communication network. Based on these information, the optimal reference values are calculated at the control center, and sent to the transformers and the inverters. The proposed method accomplishes a coordinated operation among the control equipments and reduces the voltage deviation. Effectiveness of the proposed method is verified by the numerical simulation results.  相似文献   

7.
This paper is concerned with a local regulation of the voltage profiles at buses where wind power distributed generators are connected. In particular, the aim of the work is to compare two voltage control methods: the first based on a sensitivity analysis and the second on the designing of a fuzzy control system. The two methods are tested by means of simulations on a real distribution system and the results indicate that both methods allow the voltage profiles to be regulated at the wind generator connection bus within voltage standard limits, by taking into account the capability curves of the wind generators. Nevertheless, the fuzzy method presents more advantage in comparison with the sensitivity method. In fact, (i) it provides a gentler action control with a lower reactive power consumption during control operations as the reactive power profile follows better the voltage variations; (ii) the design of the fuzzy controller is independent from the knowledge of network parameters and its topology.  相似文献   

8.
Now a day’s most power quality problems in distribution systems are related to voltage sags. Hence, diverse solutions have been tried to compensate these voltage sags to circumvent financial losses due to voltage sag at industries. Dynamic voltage restorers (DVRs) are now becoming more recognized in industries to diminish the impact of voltage sags to sensitive loads. The DVR, which is placed in series with a sensitive load, must be able to react speedily to a voltage sag if end users of sensitive equipment are to experience no voltage sags. This paper discusses the use of series reactive injection as a voltage regulator. The proposed approach is to develop analytical aspects and to illustrate these by an example of a real Indian distribution system. Voltage sag can be eliminated by continuously injecting very small voltage profile to the system. The scheme combines the method of instantaneous symmetrical components and complex Fourier transform relations. The proposed technique, based on half-cycle averaging, can mitigate voltage sag at desired locations in distribution systems. The proposed methodology is applied in a 4 bus system and a real Indian distribution system.  相似文献   

9.
In this paper, voltage balancing and frequency control of converter-fed, islanded microgrids, using a novel time-domain technique which has not been applied for such applications is discussed in detail. In particular, the connection of single-phase loads to the islanded microgrid causes voltage unbalance and this is eliminated by supplying the negative-sequence component of the voltage from the converter. The negative sequence components of the voltage and current are extracted using the aforementioned time-domain technique. The simulations are carried out in RSCAD™ and experimental results are provided to validate the concept.  相似文献   

10.
随着配电网中接入大规模分布式光伏电源,光伏的电压控制策略得到了学者们的日益关注。文中提出了三种电压控制策略,他们分别是集中式、分散式和多时间尺度的电压控制。集中电压控制调节的特点是集中调节并网电容器组、有载调压变压器分接开关和分布式光伏,这么做的好处是优化整个网络的电压控制。分散式的电压控制的特点是根据局部可用信息,通过监测点电压独立控制来改善电网的运行。基于多时间尺度的电压控制的特点,是由两部分组成的,分别是短时间尺度的配电网的实时控制和长时间尺度的配电网的优化。通过吉林电网白城市的算例,比较三种电压控制策略的优缺点,并确定三种方案的应用场景,为配网规划人员的决策提供有效依据。  相似文献   

11.
This paper discusses voltage regulation on medium-voltage feeders with distributed generation (DG) using on-load tap changer (LTC) and line drop compensation (LDC). The analysis shows that LTC is robust against DG, whereas DG can affect the effectiveness of the voltage regulation provided by LDC. However, with proper coordination between DG and LDC, it is possible to ensure voltage regulation without unnecessarily restricting the integration of DG. It is shown that, while lowering the LTC setting can increase the DG integration limit, even higher increase can be obtained by activating the LDC feature, which is present in most LTCs, but often not used. LDC regulation is also compared with other alternatives such as using a DG unit with voltage control capability and installing a line voltage regulator.  相似文献   

12.
IGBT串联应用时面临的最大难题是动态均压。本文研究了电压箝位控制方法,它将IGBT的集?射电压变化快速反馈至门极,改变门极驱动电压的大小,从而将集?射电压实时箝位于控制阈值之内,实现串联IGBT的动态均压。本文通过2个和8个IGBT串联的实验,验证了该方法的有效性。  相似文献   

13.
This paper addresses the problem of reactive power control of distributed generation (DG) units in the medium voltage (MV) distribution systems to maintain the system voltages within the predefined limits. An efficient approach for the load flow calculation is used here which is based on the topological structure of the network. It has been formulated for the radial distribution systems. A direct voltage sensitivity analysis method is developed in this paper which is also based on the topological structure of the network and independent of the network operating points. Thus, the sensitivity matrix is calculated once with the load flow program and it is used in all the system working conditions. The problem of DGs reactive power control is formulated as an optimization problem which uses the sensitivity analysis for linearizing the system around its operating points. The objective of the optimization problem is to return the system voltages inside the permitted range by using the reactive power of DGs in an optimal way. The optimal solutions are obtained by implementing particle swarm optimization (PSO) algorithm. Then, the results are verified by running a load flow considering new values of DGs reactive power. The procedure is repeated as long as a voltage violation is observed. Simulation results reveal that the proposed algorithm is capable of keeping the system voltages within the permitted limits.  相似文献   

14.
Thanks to its essential functionality and structure simplicity, proportional-integral-derivative (PID) controllers are commonly used by industrial utilities. A robust PID-based power system stabilizer (PSS) is proposed to properly function over a wide range of operating conditions. Uncertainties in plant parameters, due to variation in generation and load patterns, are expressed in the form of a polytopic model. The PID control problem is firstly reduced to a generalized static output feedback (SOF) synthesis. The derivative action is designed and implemented as a high-pass filter based on a low-pass block to reduce its sensitivity to sensor noise. The proposed design algorithm adopts a quadratic Lyapunov approach to guarantee α-decay rate for the entire polytope. A constrained structure of Lyapunov function and SOF gain matrix is considered to enforce a decentralized scheme. Setting of controller parameters is carried out via an iterative linear matrix inequality (ILMI). Simulation results, based on a benchmark model of a two-area four-machine test system, are presented to compare the proposed design to a well-tuned conventional PSS and to the standard IEEE-PSS4B stabilizer.  相似文献   

15.
随着光伏高渗透率接入不同电压等级配电网,各电压等级配电网之间相互影响更加复杂,实现运行控制策略的经济性和安全性是一个极大的挑战。文中以中压配电网为控制对象,计及不同电压等级配电网间的交互影响,提出了基于模型预测控制(MPC)的主动配电网多级电压控制方法。中高压配电网控制中,考虑高压配电网所控制的有载调压变压器(OLTC)/并联电容器组(CB)的未来时刻动作计划,建立中高压关联模型,协调控制中压配电网连续型设备与高压配电网离散型设备;中低压配电网控制中,计及中低压配电网间的不确定性交换功率及其相互影响,构建中低压关联模型,实现中压配电网对低压配电网的支撑。最后,在Matlab中进行仿真分析,验证所提多级电压控制的可行性和有效性。  相似文献   

16.
In this paper, network constrained setting of voltage control variables based on probabilistic load flow techniques is presented. The method determines constraint violations for a whole planning period together with the probability of each violation and leads to the satisfaction of these constraints with a minimum number of control corrective actions in a desired order. The method is applied to define fixed positions of tap-changers and reactive compensation capacitors for voltage control of a realistic study case network with increased wind power penetration. Results show that the proposed method can be effectively applied within the available control means for the limitation of voltages within desired limits at all load buses for various degrees of wind power penetration.  相似文献   

17.
In this paper a control strategy based on predictive control ideas is proposed for reconfiguring on-line the on-load tap changer (OLTC) voltage set-point in electrical medium voltage (MV) power grids in the presence of distributed generation (DG). The idea is that an active management of the set-point can be effective for maintaining relevant system variables within prescribed operative constraints in response to unexpected adverse conditions, e.g. changing loads or generation failures. The voltage set-point reconfiguration problem is formulated as a constrained optimization problem by imposing that the voltages at certain nodes have, compatibly with all prescribed constraints and changed conditions, minimal deviations from their nominal values. Simulation results show that the proposed approach ensures, under certain conditions, feasible evolutions to the overall network whenever critical events occur.  相似文献   

18.
In this paper, a model reference adaptive sliding mode (MRASMC) using a radical basis function (RBF) neural network (NN) is proposed to control the single-phase active power filter (APF). The RBF NN is utilized to approximate the nonlinear function and eliminate the modeling error in the APF system. The model reference adaptive current controller in AC side not only guarantees the globally stability of the APF system but also the compensating current to track the harmonic current accurately. Moreover, a sliding mode voltage controller based on an exponential approach law is designed to improve the tracking performance of DC side voltage. Simulation results demonstrate strong robustness and outstanding compensation performance with the proposed APF control system. In conclusion, MRASMC using RBF NN can improve the adaptability and robustness of the APF system and track the given instructional signal quickly.  相似文献   

19.
Nowadays, integration of new devices like Distributed Generation, small energy storage and smart meter, to distribution networks introduced new challenges that require more sophisticated control strategies. This paper proposes a new technique called Optimal Coordinated Voltage Control (OCVC) to solve a multi-objective optimization problem with the objective to minimize the voltage error at pilot buses, the reactive power deviation and the voltage error at the generators. OCVC uses Pareto optimization to find the optimal values of voltage of the generators and OLTC. It proposes an optimal participation of reactive power of all devices available in the network.OCVC is compared with the classical method of Coordinated Voltage Control and is tested on the IEEE 13 and 34 Node test feeders with unbalanced load. Some disturbances are investigated and the results show the effectiveness of the proposed technique.  相似文献   

20.
有源电力滤波器(active power filter,APF)是一种动态抑制谐波和无功的电力电子装置,以并联型有源电力滤波器为研究对象,从APF补偿电流的控制和直流侧电容电压角度出发,分析了电源电流控制方式,实现补偿电流的检测及双闭环反馈控制,提高系统的补偿精确度和动态响应性能。另外,直流侧电压的指令值都是根据电网电压的工作范围、APF的直流侧电容、额定输出电流、PWM逆变器输出侧电感、电流电压调节器以及调制策略等参数设计的,在考虑直流侧电压与APF功率损耗和补偿性能关系的基础上,提出了采用下垂调节器设计逆变器直流侧电压的控制参考值,使其兼顾APF的功率损耗及补偿性能综合平衡的优点。仿真结果验证了该APF控制系统的正确性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号