首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on annual runoff data collected from several hydrological stations in the Nen River Basin from 1956 to 2004,the cumulative filter method,Mann-Kendall method and Morlet wavelet analysis were used to analyze variations in the characteristics and factors influencing runoff.Specifically,the general characteristics list as:The distribution of runoff was found to be uneven within a year,and the annual variation showed an overall decreasing trend.The abrupt change points of runoff were found to be in the early 1960s,middle 1980s and late 1990s.Multiple time scales analysis revealed three time-scale cycles,a long-term cycle of about 20-35 years with a scale center of 25 years,another cycle of about 8-15 years with a scale center of 11 years and a short-term cycle of about 5 years.Based on the Morlet wavelet transform coefficients figure of the 25-year time scale,it is preliminarily estimated that the Nen River Basin will enter a high flow period in 2013.The results obtained using various methods were consistent with each other.The physical causes of the results were also analyzed to confirm their accuracy.  相似文献   

2.
The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.  相似文献   

3.
The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation analyses were performed on hydrological data(1981–2012) from the Yanwachuan watershed in the Loess Plateau Gully Region to study the evolution characteristics of runoff and sediment yield. A time-series contrasting method also was used to evaluate the effects of precipitation and soil and water conservation(SWC) on runoff and sediment yield. Annual sediment yield declined markedly from 1981 to 2012 although there was no significant change in annual precipitation and annual runoff. Change points of annual runoff and annual sediment yield occurred in 1996 and 1997,respectively. Compared with that in the baseline period(1981–1996), annual runoff and annual sediment yield in the change period(1997–2012)decreased by 17.0% and 76.0%, respectively, but annual precipitation increased by 6.3%. Runoff decreased in the flood season and normal season, but increased in the dry season, while sediment yield significantly declined in the whole study period. The SWC measures contributed significantly to the reduction of annual runoff(137.9%) and annual sediment yield(135%) and were more important than precipitation. Biological measures(forestland and grassland) accounted for 61.04% of total runoff reduction, while engineering measures(terraces and dams) accounted for 102.84% of total sediment yield reduction. Furthermore, SWC measures had positive ecological effects. This study provides a scientific basis for soil erosion control on the Loess Plateau.  相似文献   

4.
Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data from 1950 to 2011 at the Yangtze River Estuary.It can clearly reveal the multi-time scales structure,break point,change and distribution of periodic variation in the different time scales of the runoff series.The main conclusions are that:1) Repeated periodic oscillations accompanied by an extremely large fluctuation are presented in the runoff series with an obvious difference between wet and dry years,and the major periods of the time series are about 3,8,16 and 23 years respectively.Among them,the presented maximum periodic oscillation is 23 years scale.2) In the 23-year time scale,the wet periods are 1950-1958,1969-1980 and 1992-2003,and the dry periods are 1959-1968,1981-1991 and 2004-2011.3) It can be predicted from the view of long time scales that the low annual runoff will likely occur in the near future.  相似文献   

5.
As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil conservation. The water and sediment yield at the watershed outlet was strongly affected by these water conservation works, including ponds and reservoirs, which should be considered in the modelling. In this study, based on the observed data of the Weicheng River catchment, the relationships between precipitation, runoff, vegetation, topography and sediment yield were analyzed, a distributed runoff and sediment yield model(WSTD-SED) was developed, and the hydrological processes of different land-use scenarios were simulated by using the model. The main results are summarized as follows: 1) there is an alternating characteristic in river channels and reservoirs in the Jialing River hilly area, with scour occurring in wet years and deposit occurring in dry years. 2) Most of the sediment deposited in river channels and reservoirs is carried off by the largest flood in the year. 3) The model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, and the WSTD-SED model could be usedto obtain qualitative estimates on the effects of land use change scenarios. 4) The modelling results suggest that a 10% increase in cropland(dry land) reforestation results in a 0.7% decrease in runoff and 1.5% decrease in sediment yield.  相似文献   

6.
Based on the time series data from the Aral hydrological station for the period of 1958-2005, the paper reveals the long-term trend and fractal of the annual runoff process in the mainstream of the Tarim River by using the wavelet analysis method and the fractal theory. The main conclusions are as follows: 1) From a large time scale point of view, i.e. the time scale of 16 (24) years, the annual runoff basically shows a slightly decreasing trend as a whole from 1958 to 2005. If the time scale is reduced to 8 (23) or 4 (22) years, the annual runoff still displays the basic trend as the large time scale, but it has fluctuated more obviously during the period. 2) The correlation dimension for the annual runoff process is 3.4307, non-integral, which indicates that the process has both fractal and chaotic characteristics. The correlation dimension is above 3, which means that at least four independent variables are needed to describe the dynamics of the annual runoff process. 3) The Hurst exponent for the first period (1958-1973) is 0.5036, which equals 0.5 approximately and indicates that the annual runoff process is in chaos. The Hurst exponents for the second (1974-1989) and third (1990-2005) periods are both greater than 0.50, which indicate that the annual runoff process showed a long-enduring characteristic in the two periods. The Hurst exponent for the period from 1990 to 2005 indicates that the annual runoff will show a slightly increasing trend in the 16 years after 2005.  相似文献   

7.
The characteristics of zonal anomaly and change rule of temporal distribution of annual precipitation in the northeastern China are revealed in this paper with EOF (Empirical Orthogonal Function) and REOF (Rotated Empirical Orthogonal Function) methods and results are drawn in the standard relief maps with GIS technology for practical application. Data used in the study were obtained from 208 meteorological stations over the northeastern China from 1961 to 2001. EOF results show that the first 3 loading vectors could give entire spatial anomaly structure of annual precipitation. In the Northeast Plain including the Songneng Plain and the Liaohe Plain, there is a regional compatibility (whether wet or dry) of annual precipitation change and this precipitation pattern has occurred since the late 1980s to the present. There also exist annual precipitation patterns of wet (or dry) in south and dry (or wet) in north and wet (or dry) in east and dry (or wet) in west. REOF results display 8 principal precipitation anomaly areas by the first 8 rotated loading vectors: the west plain, the Liaodong hills, the Sanjiang Plain, the Liaoxi hills,the Changbai Mountains, the Hulun Buir Plateau, the southwest plateau and the Liaodong Peninsula.  相似文献   

8.
For the Pinang River, originating in the western highlands of Penang Island, the nature, sources and extent of pollution were studied. The river water samples collected at five selected sites were analyzed for various physical and chemical parameters, namely temperature, DO, BOD, COD, SS, pH, ammoniac nitrogen (AN), and conductance. Long-term data of rainfall and temperature were analyzed to determine the seasonal variations of the streamflow.The streamflow during the dry season is extremely low compared to the wet season, thus concentrations of contaminants derived from point pollution source increase due to lack of rainfall and runoff events. On the contrary, in the predominantly urban and agricultural catchments, non-point pollution source increases during rainy season through seepage and runoff. Effects of seasonal variations consequently deterrnine the quantity and quality of the water parameters.The Jelutong River, the Dondang River and the Air Itam River carry the seepage from widely urban and residential areas to the main Pinang River systems. Water quality of the Pinang River at different points assessed by the water quality indices was compared. According to the quality indices during the study period, water quality in the upper reaches of the river is medium to good. It dwindled in the plains, due to the seepage from urban areas and discharges from the industrial and agricultural lands.  相似文献   

9.
Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and compared and validated two methods (the MTCLIM and the modified MTCLIM) in the Qilian Mountains of Northwest China to estimate daily temperature (i.e., maximum temperature, minimum temperature) and precipitation at six weather stations from i January 2000 to 31December 2009. The algorithm of temperature in modified MTCLIM was improved by constructing the daily linear regression relationship between temperature and elevation, aspect and location information. There are two steps to modify the MTCLIM to predict daily precipitation: firstly, the linear regression relationship was built between annual average precipitation and elevation, location, and vegetation index; secondly, the distance weight for measuring the contribution of each weather station on target point was improved by average wind direction during the rainy season. Several regression analysis and goodness-of-fit indices (i.e., Pearson's correlation coefficient, coefficient of determination, mean absolute error, root-mean-square error and modelingefficiency) were used to validate these estimated values. The result showed that the modified MTCLIM had a better performance than the MTCLIM. Therefore, the modified MTCLIM was used to map daily meteorological data in the study area from 2000 to 2009. These results were validated using weather stations with short time data and the predicted accuracy was acceptable. The meteorological data mapped could become inputs for distributed hydrological and ecological models applied in the Qilian Mountains.  相似文献   

10.
The upper Huanghe(Yellow) River basin is situated in the northeast of the Qinghai-Xizang(Tibet)Plateau of China.The melt-water from the snow-cover is main water supply for the rivers in the region during springtime and other arid regions of the northwestern China, and the hydrological conditions of the rivers are directly controlled by the snowmelt water in spring .So snowmelt runoff forecast has importance for hydropower,flood prevention and water resources utilize-tion.The application of remote sensing and Geographic Information System(GIS) techniques in snow cover monitoring and snowmelt runoff calculation in the upper Huanghe River basin are introduced amply in this paper.The key parame-ter-snow cover area can be computed by satellite images from multi-platform,multi-templral and multi-spectral.A clus-ter of snow-cover data can be yielded by means of the classification filter method.Meanwhile GIS will provide relevant information for obtaining the parameters and also for zoning .According to the typical samples extracting snow covered moun-tained in detail also.The runoff snowmelt models based on the snow-cover data from NOAA images and observation data of runoff,precipitation and air temperature have been satisfactorily used for predicting the inflow to the Longyangxia Reser-voir,which is located at lower end of snow cover region and is one of the largest reservoirs on the upper Huanghe River, during late March to early June.The result shows that remote sensing techniques combined with the ground meteorological and hydrological observation is of great potential in snowmelt runoff forecasting for a large river basin.With the develop-ment of remote sensing technique and the progress of the interpretation method,the forecast accuracy of snowmelt runoff will be improved in the near future .Large scale extent and few stations are two objective reality situations in Chian,so they should be considered in simulation and forecast.Apart from dividing ,the derivation of snow cover area from satellite images would decide the results of calculating runoff.Field investigation for selection of the learning samples of different snow patterns is basis for the classification.  相似文献   

11.
This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Maj or findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, av- erage temperature in summer, and average temperature in spring. The average annual temperature and annual precipitation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipitation showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we observed nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.  相似文献   

12.
The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries(water-exporting area), to the upstream of the Yellow River(waterimporting area). The long-term hydrological data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow characteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, waterimporting area, and the stretch downstream of the water-exporting have synchronization in high–low flow relationship, whereas they display nonsynchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological compensation probability for rivers where water is diverted is about 25% to 10%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the waterexporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the waterexporting area.  相似文献   

13.
Xinjiang is located in the core China's ‘Belt and Road’ development, and northern Xinjiang is an important region for economic development. In recent years, due to the strong influence of global climate change and human disturbance, regional climate instability and ecological-economic-social system sensitivity have grown. In this paper, seasonal, interannual, interdecadal, spatial, abrupt, and periodic variations of temperature and precipitation in northern Xinjiang were analyzed using daily surface air temperature and precipitation data from 49 meteorological stations during 1961–2017. At the same time, the driving factors of climate change are discussed. Methods included linear regression, cumulative anomaly, the Mann-Kendall test, and Morlet wavelet analysis. The results indicated that during the study period, annual mean temperature and annual precipitation increased significantly at rates of 0.35℃/10 yr and 13.25 mm/10 yr, respectively, with abrupt changes occurring in 1994 and 1986. Annual mean temperature and annual precipitation in all four seasons showed increasing trends, with the maximum increases in winter of 0.42℃/10 yr and 3.95 mm/10 yr, respectively. The general climate in northern Xinjiang showed a trend towards increasingly warm and humid. In terms of spatial distribution, the temperature and precipitation in high mountainous areas increased the most, while basins areas increased only slightly. Periodic change analysis showed that annual mean temperature and annual precipitation experienced two climatic shifts from cold to warm and dry to wet, respectively. Population change, economic development and land use change are important factors affecting climate change, and more research should be done in this field.  相似文献   

14.
Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Lijin station in the Huanghe (Yellow) River and at the Datong station in the Changjiang (Yangtze) River were examined. Using the empirical mode decomposition-maximum entropy spectral analysis (EMD- MESA) method, the 2- to 3-year, 8- to 14-year, and 23-year cyclical variations of the annual water discharge at the two stations were discovered. Based on the analysis results, the hydrological time series on the inter- annual to interdecadal scales were constructed. The results indicate that from 1950 to 2011, a significant downward trend occurred in the natural annual water discharge in Huanghe River. However, the changes in water discharge in Changjiang River basin exhibited a slightly upward trend. It indicated that the changes in the river discharge in the Huanghe basin were driven primarily by precipitation. Other factors, such as the precipitation over the Changjiang River tributaries, ice melt and evaporation contributed much more to the increase in the Changjiang River basin. Especially, the impacts of the inter-annual and inter-decadal climate oscillations such as ENSO and PDO could change the long-term patterns of precipitation over the basins of the two major rivers. Generally, low amounts of basin-wide precipitation on interannual to interdecadal scales over the two rivers corresponded to most of the warm ENSO events and the warm phases of the PDO, and vice versa. The positive phases of the PDO and ENSO could lead to reduced precipitation and consequently affect the long-term scale water discharges at the two rivers.  相似文献   

15.
Much attention has recently been focused on the effects of climate variability and human activities on the runoff. In this study, we analyzed 56-yr(1957–2012) runoff change and patterns in the Jinghe River Basin(JRB) in the arid region of northwest China. The nonparametric Mann–Kendall test and the precipitation-runoff double cumulative curve(PRDCC) were used to identify change trend and abrupt change points in the annual runoff. It was found that the runoff in the JRB has periodically fluctuated in the past 56 yr. Abrupt change point in annual runoff was identified in the JRB, which occurred in the years around 1964 and 1996 dividing the long-term hydrologic series into a natural period(1957 – 1964) and a climate and man-induced period(1965 – 1996 and 1997 – 2012). In the 1965 – 1996 period, human activities were the main factor that decreased runoff with contribution of 88.9%, while climate variability only accounted for 11.1%. However,the impact of climate variability has been increased from 11.1% to 47.5% during 1997 – 2012, showing that runoff in JRB is more sensitive to climate variability during global warming. This study distinguishes theeffect of climate variability from human activities on runoff, which can do duty for a reference for regional water resources assessment and management.  相似文献   

16.
Runoff coefficients of the source regions of the Huanghe River in 1956–2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had at- tracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual pre- cipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is –3.9oC, temperature is the main factor in- fluencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area be-tween Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients be-come insignificant.  相似文献   

17.
As one of the fastest developing regions in China, the middle-lower Yangtze River(MLYR) is vulnerable to floods and droughts. With obtained time series of annual highest water level(HWL), annual lowest water level(LWL) and the corresponding river discharges from three gauging stations in MLYR that covering the period 1987–2011, the current study evaluated the change characteristics of annual extreme water levels and the correlation with river discharges by using the methods of trend test, Mann-Whitney-Pettitt(MWP) test and double mass analysis. Major result indicated a decreasing/increasing trend for annual HWL/LWL of all stations in MLYR during the study period. A change point in 1999 was identified for annual HWL at the Hankou and Datong stations. The year 2006 was found to be the critical year that the relationship between annual extreme water levels and river discharges changed in the MLYR. With contrast to annual LWL in MLYR, further investigation revealed that the change characteristics of annual HWL were highly consistent with regional precipitation in the Yangtze River Basin, while the linkage with Three Gorges Dam(TGD) operation is not strong. Our observation also pointed out that the effect of serious down cutting of the riverbed and the enlargement of the cross-section area during the initial period of TGD operation caused the downward trend of the relationship between annual LWL and river discharge. Whereas, the relatively raised river water level before the flood season due to TGD regulation since 2006 explained for the changing upward trend of the relationship between annual HWL and river discharge.  相似文献   

18.
Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets(gauge observations, inverse distance weighted(IDW) data, Tropical Rainfall Measuring Mission(TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations(CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool(SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency(NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning.  相似文献   

19.
With changing climatic conditions and snow cover regime, regional hydrological cycle for a snowy basin will change and further available surface water resources will be redistributed. Assessing snow meltwater effect on runoff is the key to water safety, under climate warming and fast social-economic developing status. In this study, stable isotopic technology was utilized to analyze the snow meltwater effect on regional hydrological processes, and to declare the response of snow hydrology to climate change and snow cover regime, together with longterm meteorological and hydrological observations, in the headwater of Irtysh River, Chinese Altai Mountains during 1961-2015. The average δ~(18) O values of rainfall, snowfall, meltwater, groundwater and river water for 2014–2015 hydrological year were-10.9‰,-22.3‰,-21.7‰,-15.7‰ and-16.0‰, respectively.The results from stable isotopes, snow melting observation and remote sensing indicated that the meltwater effect on hydrological processes in Kayiertesi River Basin mainly occurred during snowmelt supplying period from April to June. The contribution of meltwater to runoff reached 58.1% during this period, but rainfall, meltwater and groundwater supplied 49.1%, 36.9% and 14.0% of water resource to annual runoff, respectively. With rising air temperature and increasing snowfall in cold season, the snow water equivalent(SWE) had an increasing trend but the snow cover duration declined by about one month including 13-day delay of the first day and 17-day advancement of the end day during 1961–2016. Increase in SWE provided more available water resource. However, variations in snow cover timing had resulted in redistribution of surface water resource, represented by an increase of discharge percentage in April and May, and a decline in Juneand July. This trend of snow hydrology will render a deficit of water resource in June and July when the water resource demand is high for agricultural irrigation and industrial manufacture.  相似文献   

20.
Stochastic characteristics of the Benue River streamflow process are examined under conditions of data austerity. The streamflow process is investigated for trend, non-stationarity and seasonality for a time period of 26 years. Results of trend analyses with Mann-Kendall test show that there is no trend in the annual mean discharges. Monthly flow series examined with seasonal Kendall test indicate the presence of positive change in the trend for some months, especially the months of August, January, and February. For the stationarity test, daily and monthly flow series appear to be stationary whereas at 1%, 5%, and 10% significant levels, the stationarity alternative hypothesis is rejected for the annual flow series. Though monthly flow appears to be stationary going by this test, because of high seasonality, it could be said to exhibit periodic stationarity based on the seasonality analysis. The following conclusions are drawn: (1) There is seasonality in both the mean and variance with unimodal distribution. (2) Days with high mean also have high variance. (3) Skewness coefficients for the months within the dry season period are greater than those of the wet season period, and seasonal autocorrelations for streamflow during dry season are generally larger than those of the wet season. Precisely, they are significantly different for most of the months. (4) The autocorrelation functions estimated "over time" are greater in the absolute value for data that have not been deseasonalised but were initially normalised by logarithmic transformation only, while autocorrelation functions for i = 1, 2 365 estimated "over realisations" have their coefficients significantly different from other coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号