首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(10):7942-7947
Arrayed In2O3 nanosheets were synthesized directly via a two-step solution approach on an Al2O3 ceramic tube. Their morphology and structure were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–Vis absorption spectroscopy, and scanning electron microscopy (SEM). The results reveal that the length of each nanosheet is about 1 µm, the width of the bottom of nanosheet is about 200 nm. Importantly, the In2O3 nanosheets with large specific surface area possess highly sensing performance for ethanol detection. The response value to 100 ppm ethanol is about 45 at an operating temperature of 280 °C, and the response and recovery time are extremely short. It is expected that the directly grown In2O3 nanosheets with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting ethanol.  相似文献   

2.
《Ceramics International》2022,48(9):12291-12298
Nanomaterials offer a wide range of applications in environmental nanotechnology. Hazardous pollutants in the environment are needed to be detected and controlled effectively to avoid human health risks. In this paper, we described the fine-controlled growth of In2O3 nanoparticles embedded on GO nanosheets by a facile precipitation method. The In2O3@GO nanocomposites exhibited outstanding gas sensing performance as compared with pure In2O3 nanoparticles towards NO2. At 225 °C, the sensor displayed high selectivity, best response (78) to 40 ppm NO2, quick response, and recovery times of 106s/42s. The improved sensing performances of the nanocomposite were attributed to large surface area, high gas adsorption-desorption capability, and the formation of p-n heterojunctions between In2O3 nanoparticles and GO nanosheets. The excellent gas detecting activities validate In2O3@GO nanocomposites as a promising candidate in the NO2 gas sensor industry.  相似文献   

3.
Highly active two-dimensional (2D) nanocomposites, integrating the unique merits of individual components and synergistic effects of composites, have been recently receiving attention for gas sensing. In this work, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites were synthesized using In2O3 nanocubes and layered Ti3C2Tx MXene via a facile hydrothermal self-assembly method. Characterization results indicated that the In2O3 nanocubes with sizes approximately 20–130 nm in width were well dispersed on the surface of layered Ti3C2Tx MXene to form numerous heterostructure interfaces. Based on the synergistic effects of electronic properties and gas-adsorption capabilities, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites exhibited high response (29.6%–5 ppm) and prominent selectivity to methanol at room temperature. Meanwhile, the low detection concentration could be reduced to ppm-level, the response/recovery times are shortened to 6.5/3.5 s, excellent linearity and outstanding repeatability. The strategy of compositing layered MXene with metal oxide semiconductor provides a novel pathway for the future development of room temperature gas sensors.  相似文献   

4.
CuO/In2O3 core–shell nanorods were fabricated using thermal evaporation and radio frequency magnetron sputtering. X-ray diffraction and transmission electron microscopy showed that both the cores and shells were crystalline. The multiple networked CuO/In2O3 core–shell nanorod sensors showed responses of 382–804%, response times of 36–54 s and recovery times of 144–154 s at ethanol (C2H5OH) concentrations ranging from 50 to 250 ppm at 300 °C. These responses were 2.3–2.8 times higher than those of the pristine CuO nanorod sensor over the same C2H5OH concentration range. The origin of the enhanced ethanol sensing properties of the core–shell nanorod sensor is discussed.  相似文献   

5.
GaN nanowires and GaN-core/WO3-shell nanowires were synthesized by the thermal evaporation of GaN powders followed by the sputter-deposition of WO3 and their gas sensing properties were examined. The multiple networked pristine GaN nanowire sensors showed responses of approximately 125%, 140%, 146%, 159%, and 183% to 1, 2, 3, 4, and 5 ppm NO2 gases, respectively. These responses are comparable to those obtained previously using metal oxide semiconductor one-dimensional nanostructure sensors. The responses of the nanowires to 1, 2, 3, 4, and 5 ppm NO2 gases were improved 1.3, 1.4, 1.6, 1.7 and 1.8 fold, respectively, further through the encapsulation of GaN nanowires with a WO3 thin film. The improvement in the response of GaN nanowires to NO2 gas by encapsulation is attributed to the modulation of electron transport at GaN–WO3 heterojunction. The electron transport in the core-shell nanowires is modulated by the heterojunction with an adjustable energy barrier height, resulting in an enhanced sensing property of the core-shell nanostructures.  相似文献   

6.
《Ceramics International》2023,49(18):30170-30177
Hydrothermally synthesized In2O3 nanocubes were sensitized with Au and gas sensing performance is analyzed. The Au sensitization was done using sputtering and gas sensing performance is studied as function of different sputtering time. The catalytic activity of Au particles on In2O3 films increases with the sputtering time but acquires saturation at high sputtering time. The Au sensitization with sputtering time of 5 s was found to show improved sensor response (Rg/Ra) of 8435 than the sensor response of 6876 for pure In2O3 film. The improved sensor response was attributed to the catalytic activity of Au particles on the In2O3 film surface. In addition, Au sensitized In2O3 also demonstrates the sensor response at 60 ppb.  相似文献   

7.
采用溶胶-凝胶法结合静电纺丝技术制备了直径20~60 nm的超细氧化铟(In2O3)纳米陶瓷纤维及纳米陶瓷纤维无纺布。采用XRD,IR,SEM,HR-TEM,TGA等分析方法对纳米纤维的形貌和显微结构进行了表征,并研究了其气敏特性。由700℃下煅烧的该超细In2O3纳米纤维所制备的气敏元件具有较好的反应和选择性,对甲醛气体表现出较快的响应和恢复速度。  相似文献   

8.
《Ceramics International》2023,49(20):33082-33088
As the cognition of metal oxide semiconductor becomes deeper and deeper, their excellent sensing ability has also been demonstrated. The gas sensors with metal oxide semiconductor as basis materials have become a hot topic at present. Enhancing the sensitivity and reducing the test limit of the sensor are exceedingly important topic. It is crucial to regulate the morphology of metal oxide semiconductor materials to improve the gas sensing performance. Low-dimensional materials such as quantum dots, one-dimensional nanowires and nanorods usually show the excellent gas-sensitive properties. In this work, one-dimensional YFeO3 nanorods were synthesized by electrospinning technology. The one-dimensional rod-like structure enables more active sites to be exposed on the surface of materials, which can effectively promote the adsorption process of the YFeO3 nanorods to the test gases, so as to improve the gas sensing performance. Found by testing the gas sensitivity, YFeO3 nanorods responds far better to ethanol than other tested gases. The response and recovery time of YFeO3 nanorods to 100 ppm ethanol at 350 °C was approximately 19 s and 9 s, respectively. It indicates that the response and recovery ability of YFeO3 nanorods to ethanol were excellent. The study can provide technical reference for subsequent preparation of remarkable performance ethanol sensor and enrich the materials category of gas sensor fields.  相似文献   

9.
《Ceramics International》2022,48(5):6600-6607
Ti3C2Tx, as a novel two-dimensional material, displays promising prospects in NH3 detection at room temperature. However, the NH3 detection limit of pristine Ti3C2Tx is still a major research concern. Therefore, it is important to explore new Ti3C2Tx-based nanocomposites for better NH3-sensing performance. In the present experiment, Ti3C2Tx/In2O3 nanocomposites were successfully synthesized by ultrasonication and characterized by XRD, FESEM, TEM, XPS, and BET. The optimal Ti3C2Tx/In2O3-based sensor had a high response of 63.8% (30.4 times higher than that of pristine Ti3C2Tx) to 30 ppm NH3 at room temperature. In addition, the optimal Ti3C2Tx/In2O3-based sensor had stable repeatability, excellent selectivity, and long-term stability, while exhibiting excellent potential for NH3 detection at room temperature.  相似文献   

10.
《Ceramics International》2022,48(17):24213-24233
In recent years, gas sensors fabricated from gallium oxide (Ga2O3) materials have aroused intense research interest due to the superior material properties of large dielectric constant, good thermal and chemical stability, excellent electrical properties, and good gas sensing. Over the past decades, Ga2O3-based gas sensors experienced rapid development. The long-term stable Ga2O3-based gas sensors for detecting oxygen and carbon monoxide have been commercialized and renowned with extremely good gas sensing characteristics. Recent pioneering studies also exhibit that the Ga2O3-based gas sensors possess great potentials in applications of detecting nitrogen oxides, hydrogen, volatile organic compounds and ammonia gases. This article presents recent advances in gas sensing mechanism, device performance parameters, influence factors, and applications of Ga2O3-based gas sensors. The impacts of influence factors, doping, material structure and device structure on the performance of gas sensors are discussed in detail. Finally, a brief overview of challenges and opportunities for the Ga2O3-based gas sensors is presented.  相似文献   

11.
Tungsten oxide nanorods have been prepared by a simple microwave hydrothermal (MH) method via Na2SO4 as structure-directing agent at 180 °C for 20 min. The structure and morphology of the products are characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The obtained nanorods are about 20–50 nm in diameter and several micrometers in length. The ethanol sensing property of as-prepared tungsten oxide nanorods is studied at ethanol concentration of 10–1000 ppm and working temperature of 370–500 °C. It was found that the sensitivity depended on the working temperatures and also ethanol concentration. The results show that the tungsten oxide nanorods can be used to fabricate high performance ethanol sensors.  相似文献   

12.
《Ceramics International》2020,46(12):20385-20394
Mesoporous Fe-doped In2O3 nanorods derived from metal-organic frameworks (In/Fe-MIL-68s) were synthesized for NO2 detection. The morphologies, structures and NO2 gas-sensing performances of the Fe–In2O3 nanorods were systematically investigated. Texture characterizations demonstrate that the as-prepared Fe–In2O3 nanorods show rich porous structures, high specific surface areas and reduced grain sizes. Gas-sensing measurements display that the Fe–In2O3 nanorods derived from In/Fe-MIL-68s with the Fe(Ⅲ) content of 5 mol.% (Fe(5)-In2O3) exhibit high response (82) and short response/recovery time (70/65 s) towards 2 ppm NO2 at 80 °C compared with their counterparts. Besides, superior selectivity and good stability are observed. The sensing mechanism studies reveal that the improved gas-sensing performances are attributed to the decrease in the gran size, the formation of rich oxygen vacancies and band gaps narrowing caused by Fe(Ⅲ) doping. Therefore, this work indicates that the Fe–In2O3 nanorods derived from metal-organic frameworks precursors can be a promising candidate for NO2 detection.  相似文献   

13.
In this work, a novel strategy has been adopted for the synthesis of hybrid Co-doped ZnO (Co/ZnO) microspheres using the solvothermal method with a synergistic effect of ultrasonic and microwave radiation. The Co/ZnO microspheres were characterized by XRD, FE-SEM, XPS and BET techniques. Sensing tests revealed that the Co/ZnO microspheres exhibited highly better ethanol sensing properties than pure ZnO nanoparticles did, including lower limit of detection (less than 10?ppm), higher response (ca. 120–100?ppm ethanol), lower operating temperature (ca. 220?°C), faster response (10?s) and recovery time (5?s) and better selectivity. The superior gas sensing properties were mainly attributed to the incorporation of Co, which increased the amount of oxygen vacancies and adsorbed oxygen. The sensing mechanism has been explained by oxygen chemisorption on the ZnO surfaces and subsequent reactions of surface adsorbed oxygen species with the ethanol molecules.  相似文献   

14.
《Ceramics International》2016,42(14):15889-15896
Well-defined three-dimensional (3D) hierarchical tin dioxide (SnO2) nanoflowers with the size of about 200 nm were successfully synthesized by a simple template-free hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption-desorption analyses were used to characterize the structure and morphology of the products. The as-synthesized full crystalline and large specific surface area SnO2 nanoflowers were assembled by one-dimensional (1D) SnO2 nanorods with sharp tips. A possible self-assembly mechanism for the formation the SnO2 nanoflowers was speculated. Moreover, gas sensing investigation showed the sensor based on SnO2 nanoflowers to exhibit high response and fast response-recovery ability to detect acetone and ethanol at an operating temperature lower than 200 °C. The enhancement of gas sensing properties was attributed to their 3D hierarchical nanostructure, large specific surface area, and small size of the secondary SnO2 nanorods.  相似文献   

15.
Monocrystal SnO2 and Pd-SnO2 nanoribbons have been successfully synthesized by thermal evaporation, and novel ethanol sensors based on a single Pd-SnO2 nanoribbon and a single SnO2 nanoribbon were fabricated. The sensing properties of SnO2 nanoribbon (SnO2 NB) and Pd-doped SnO2 nanoribbon (Pd-SnO2 NB) sensors were investigated. The results indicated that the SnO2 NB showed a high sensitivity to ethanol and the Pd-SnO2 NB has a much higher sensitivity of 4.3 at 1,000 ppm of ethanol at 230°C, which is the highest sensitivity for a SnO2-based NB. Pd-SnO2 NB can detect ethanol in a wide range of concentration (1 ~ 1,000 ppm) with a relatively quick response (recovery) time of 8 s (9 s) at a temperature from 100°C to 300°C. In the meantime, the sensing capabilities of the Pd-SnO2 NB under 1 ppm of ethanol at 230°C will help to promote the sensitivity of a single nanoribbon sensor. Excellent performances of such a sensor make it a promising candidate for a device design toward ever-shrinking dimensions because a single nanoribbon device is easily integrated in the electronic devices.  相似文献   

16.
The 1D ZnO nanorods (NR's) were grown with Zinc (Zn) ion precursor concentration variation on seed layer glass substrate by the low temperature hydrothermal method and utilized for nitrogen dioxide (NO2) gas sensing application. Zn ion precursor concentration varied as 0.02, 0.03, 0.04, 0.05 and 0.06 M and thin films were characterized for structural, morphological, optical, electrical, surface defect study and gas sensing properties. All the film showed dominant orientation along the (002) direction, the intensity of the peak vary with the length of the nanorods. SEM cross images confirmed that nanorods had vertical alignment perpendicular to the plane of the substrate surface. The PL intensity of oxygen vacancy related defects for prepared samples was found to be linearly proportional to gas sensing phenomena. This result in good agreement with the theoretical postulation that, oxygen vacancies plays the important role for adsorption sites to NO2 molecule. The gas sensing performance was studied as a function of operating temperature, Zn ion precursor concentration variation, and gas concentration. The maximum gas response is 113.32–100 ppm NO2 gas at 150 °C for 0.05 M sample out of all prepared samples. Additionally, ZnO thin film sensor has potential to detect NO2 as low as 5 ppm.  相似文献   

17.
《Ceramics International》2023,49(18):29962-29970
The few-layered Ti3C2Tx/WO3 nanorods foam composite material was synthesized by electrostatic self-assembly and bidirectional freeze-drying technologies. The phase structure and microstructure of synthesized samples was characterized by XRD, FESEM, TEM and their gas sensing properties estimated via a self-designed equipment with four test channels. The results demonstrate WO3 nanorods were successfully anchored on the surface and between layers of few-layered Ti3C2Tx MXene by electrostatic self-assembly strategy and the composite material simultaneously has a low-density foam morphology by means of bidirectional freeze-drying processes. There exists a typical heterostructure at the interfaces owing to the inseparable contact between the few-layered Ti3C2Tx MXene and WO3 nanorods. Compared with the original WO3 nanorods, the few-layered Ti3C2Tx/WO3 nanorods foam composite material displays excellent gas sensing properties for NO2 detection at low temperature, in particular the optimal value of gas sensing response (Rg/Ra) reaches to 89.46 toward 20 ppm NO2 at 200 °C. The gas sensing mechanism was also discussed. The increase of gas sensitivity is attributed to a fact that during the reaction process of gas sensing, the excellent conductivity of the few-layered Ti3C2Tx MXene provided faster transport channels of free carriers, and the heterojunctions formed by few-layered Ti3C2Tx MXene and WO3 nanorods enhanced the carriers separation efficiency. Meanwhile, the low-density layered structure of few-layered Ti3C2Tx/WO3 nanorods foam composite material provides convenient diffusion paths for gas molecules to the surface of WO3 nanorods.  相似文献   

18.
首先以不同比例的铬绿和氧化铝粉电熔制得Cr2O3质量分数分别为15%、40%、50%、60%、85%、99%的6种Cr2O3-Al2O3电熔颗粒料(其编号依次为CR15、CR40、CR50、CR60、CR85和CR99),然后采用回转渣蚀法研究了此电熔颗粒料(4~1 mm)的抗侵蚀性。结果显示:电熔颗粒料的抗侵蚀性随Cr2O3含量的增加及颗粒尺寸的增大而增强;高Cr2O3含量的CR99、CR85颗粒料在渣面层被侵蚀,主要是渣中的FeO和Al2O3对颗粒料的侵蚀,FeO与骨料中的Cr2O3反应,首先形成(Fe,Cr)3O4尖晶石,再与其他物相反应形成了复合尖晶石,当FeO耗尽后,渗入到颗粒内的Al2O3开始和Cr2O3反应,在颗粒表面形成铝铬固溶体;CR60颗粒料在渣面层和渗透层都存在侵蚀,渗透层的侵蚀主要是CaO、SiO2对颗粒料中铝铬固溶体中Al2O3的熔蚀,形成钙长石、钙黄长石以及玻璃相;Cr2O3含量较低的CR50、CR40、CR15颗粒料在渗透层内的侵蚀机制和CR60颗粒料的相同。  相似文献   

19.
《Ceramics International》2022,48(15):21982-21987
In recent years, environmental pollution and industrial accidents caused by the leakage of harmful gas are ever-increasing, and advanced gas sensors have been considered to be one of the main strategies for environmental monitoring and industrial safety control. Herein, Cr2O3 film decorated disordered porous SnO2 (Cr2O3@SnO2) composite was synthesized as an effective gas sensor toward NOx gas. The response of the Cr2O3@SnO2 gas sensor toward 100 ppm NOx gas could reach 71 % and the response time is 2.5 s. Meanwhile, the minimum detection level toward NOx gas is only 0.3 ppm, which is pretty lower compared to other materials reported before. The excellent gas-sensitive performance is attributed to the unique heterostructure formed between the Cr2O3 film and the SnO2 matrix, and electrons in this area can migrate to overcome the barrier with less energy. As a result, O2 and NOx gas can draw electrons from the Cr2O3@SnO2 gas sensor easily, thus leading to improved gas-sensitive performance. More importantly, this research provides a new idea to synthesize effective NOx gas-sensitive materials based on the p-p heterostructure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号