首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(12):13919-13924
A series of green-to-red color-tunable Sr3La(PO4)3:Tb3+, Eu3+ phosphors were prepared by high temperature solid-state method. The crystal structures, photoluminescence properties, fluorescence lifetimes, and energy transfer of Sr3La(PO4)3:Tb3+, Eu3+ were systematically investigated in detail. The obtained phosphors show both a green emission from Tb3+ and a red emission from Eu3+ with considerable intensity under ultraviolet (UV) excitation (~377 nm). The emission colors of the phosphors can be tuned from green (0.304, 0.589) through yellow (0.401, 0.505) and eventually to red (0.557, 0.392) due to efficient Tb3+-Eu3+ energy transfer (ET). The Tb3+→Eu3+ energy transfer process was demonstrated to be quadrupole-quadrupole mechanism by Inokuti-Hirayama model, with maximum ET efficiency of 86.3%. The results indicate that the Sr3La(PO4)3:Tb3+, Eu3+ phosphors might find potential applications in the field of lighting and displays.  相似文献   

2.
A series of LaCaGaO4:xBi3+,yEu3+ (x = 0.002–0.04, y = 0.02–0.45) phosphors with adjustable emission colors were synthesized by high-temperature solid-state reaction. The samples were identified as pure phases by X-ray diffraction and Rietveld refinement, and the crystal structures were analyzed in detail. The LaCaGaO4:xBi3+ phosphor shows an intense blue emission under near-ultraviolet excitation, originating from the 3P11S0 transition. The spectrum analysis reveals that the Bi3+ ions occupy two luminescence centers in the LaCaGaO4 host and that energy transfer can occur. A model of the energy transfer between the Bi3+ and Eu3+ ions was also created and studied in detail. As the Eu3+-concentration increased, the emission color of the LaCaGaO4:0.005Bi3+,yEu3+ phosphor changed from blue to pink to red. In addition, the fluorescence lifetime, quantum yield, thermal stability, and other properties of the phosphors were characterized and analyzed. Finally, two white light-emitting diode devices with Ra values of 96.6 and 95 and correlated color temperatures of 4578 and 3324 K were fabricated, indicating the potential of phosphors for warm white lighting applications.  相似文献   

3.
《Ceramics International》2020,46(8):11994-12000
Eu3+-activated Sr9LiMg(PO4)7 phosphors, which presented bright red emissions mainly from the 5D07F2 transition of Eu3+ ions upon the near-ultraviolet excitation, were successfully synthesized in ambient atmosphere. The crystal structure, phase constitution, photoluminescent behaviors, decay time, internal quantum efficiency and thermal stability of the resultant phosphors were investigated in detail. Eu3+ ions are found to tend to occupy multiple Sr2+ sites, which are 7, 8 and 10-coordinated. The optimal doping concentration is 7 mol% and the electrical multipolar interaction contributed to the non-radiative energy transfer between Eu3+ ions in Sr9LiMg(PO4)7 host lattices. Temperature-dependent PL spectra indicated Sr9LiMg(PO4)7: Eu3+ possess excellent emission and color stability at elevated temperature. Fabricated single-chromatic LED prototype emit bright red light under 20 mA bias current, which demonstrates that Sr9LiMg(PO4)7: Eu3+ phosphor is of great potential as converted phosphor in NUV LED application.  相似文献   

4.
《Ceramics International》2015,41(6):7766-7772
A series of (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 (0≤x≤0.54) composite phosphors was synthesized in one step by high temperature solid state reaction and the photoluminescence properties were investigated. By means of co-doping Eu3+ and Bi3+ ions into the composite matrices composed of YVO4 and Y2O3 crystals, the YVO4/Y2O3:Eu3+,Bi3+ phosphor exhibits simultaneously the blue (418 nm), green (540 nm) and orange-red (595, 620 nm) emissions. The broad blue and green emissions are attributed to the 3P11S0 transitions of Bi3+ ion both in Y2O3 and in YVO4 matrices. Moreover, the sharp orange-red emissions are attributed to the 5D07F1,2 transitions of Eu3+ ion in YVO4 matrix. By tuning the mole ratio of YVO4/Y2O3 matrices the white light-emitting could be obtained. The results indicated that when the mole ratio of Y2O3 (x) is at 0.11–0.54 mol, the (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 phosphors emit white light by combining the blue, green and orange-red emissions under the excitation of 360–370 nm wavelength which matches the emission of the commercial UV-LED diode. This implies that the phosphors may be the promising white light materials with broad absorption band for white light-emitting diodes.  相似文献   

5.
《Ceramics International》2016,42(12):13841-13848
A series of Eu3+- or Dy3+-doped and Eu3+/Dy3+ co-doped Y2WO6 in pure phase was synthesized via high-temperature solid-state reaction. X-ray diffraction, diffuse reflection spectra, photoluminescence excitation and emission spectra, the CIE chromaticity coordinates and temperature-dependent emission spectra were exploited to investigate the phosphors. Upon UV excitation at 310 nm, efficient energy transfer from the host Y2WO6 to dopant ions in Eu3+ or Dy3+ single-doped samples was demonstrated and those phosphors were suitable for the UV LED excitation. The intense red emission was observed in Y2WO6: Eu3+, and blue and yellow ones were observed in Y2WO6: Dy3+. Concentration quenching in Y2WO6: Dy3+ phosphors could be attributed to the electric dipole-dipole interaction. In Eu3+/Dy3+ co-doped Y2WO6 phosphors energy transfer process only took place from the host to Eu3+/Dy3+ ions and warm white-light emission can be obtained by adjusting the dopant concentrations. The temperature-dependent luminescence indicated Eu3+/Dy3+ co-doped Y2WO6 was thermally stable. Our overall results suggested that Y2WO6: Ln3+ (Ln3+=Eu3+, Dy3+) as warm white-light emitting host-sensitized phosphor might be potentially applied in WLEDs.  相似文献   

6.
《Ceramics International》2017,43(18):16323-16330
The tricolor-emitting MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors for ultraviolet-LED have been prepared via a high-temperature solid-state method. X-ray diffraction, photoluminescence emission, excitation spectra and fluorescence lifetime were utilized to characterize the structure and the properties of synthesized samples. Two different lattice sites for Ce3+ are occupied from the host structure and the normalized PL and PLE spectra. The emissions of single-doped Ce3+/Tb3+/Eu3+ are located in blue, green and red region, respectively. The energy transfer from Ce3+ to Tb3+ and from Tb3+ to Eu3+ has been validated by spectra and decay curves and the energy transfer mode from Tb3+ to Eu3+ was calculated to be electric dipole-dipole interactions. By adjusting the content of Tb3+ and Eu3+ in MgY4Si3O13: Ce3+, Tb3+, Eu3+, the CIE coordinates can be changed from blue to green and eventually generate white light under UV excitation. All the results indicate that the MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors are potential candidates in the application of UV-WLEDs.  相似文献   

7.
《Ceramics International》2016,42(5):6115-6120
Ce3+ and Tb3+ singly doped and co-doped GdAl3(BO3)4 phosphors were synthesized by solid state reaction. The crystal structure, the luminescent properties, the lifetimes and the temperature-dependent luminescence characteristic of the phosphors were investigated. Through an effective energy transfer, the emission spectra of GdAl3(BO3)4:Ce3+, Tb3+ phosphor contains both a broad band in the range of 330–400 nm originated from Ce3+ ions and a series of sharp peaks at 484, 541, 583, and 623 nm due to Tb3+ ions. The energy transfer from Ce3+ to Tb3+ in GdAl3(BO3)4 host is demonstrated to be phonon assisted nonradiative energy transfer via a dipole–dipole interaction.  相似文献   

8.
Dy3+, Eu3+: NaLa(WO4)2 phosphors are successfully synthesized through the solid-state reaction technique. The phase-structure and morphology are measured via X-ray diffraction and energy dispersive spectrometry. The concentrations of Dy3+, Eu3+, La3+, and W6+ are measured via ICP. The absorption and excited spectra are presented, which indicate that a blue band ranging from 430 to 480 nm is suitable for excitation. Using a commercial blue LED with a wavelength of 450 nm as the excitation light source, emission spectra for samples with varying dopant concentration ratios of Dy3+ to Eu3+ are obtained, which show good tunable yellow and red emission. For the purpose of investigating white LED performance, CIE spectra and a white light photo are also presented. The results reveal that varying the dopant concentration ratio of Dy3+ to Eu3+ plays a key role in the warm-white performance. With increasing concentration of Eu3+, the correlated color temperature decreases from 4069 to 3172 K, which indicates good warm-white performance.  相似文献   

9.
《Ceramics International》2017,43(11):8406-8410
Color-tunable Dy3+/Eu3+ co-doped in Ce2AlO3N phosphors were synthesized via a simple conventional solid state reaction. The as-prepared samples were characterized by XRD, TEM and photoluminescence spectra. Results show that the concentrations of Eu3+ ions can affect the blue and yellow emission intensities of Dy3+, and tunable emission color can be obtained by adjusting the doping concentrations of Eu3+. Based on the energy levers of Eu3+and Dy3+, the mechanism of tunable color has been presented in detail. The thermal stability of Dy3+/Eu3+: Ce2AlO3N has also been discussed.  相似文献   

10.
LaScO3:xBi3+,yTb3+,zEu3+ (x = 0 − 0.04, y = 0 − 0.05, z = 0 − 0.05) phosphors were prepared via high-temperature solid-state reaction. Phase identification and crystal structures of the LaScO3:xBi3+,yTb3+,zEu3+ phosphors were investigated by X-ray diffraction (XRD). Crystal structure of phosphors was analyzed by Rietveld refinement and transmission electron microscopy (TEM). The luminescent performance of these trichromatic phosphors is investigated by diffuse reflection spectra and photoluminescence. The phenomenon of energy transfer from Bi3+ and Tb3+ to Eu3+ in LaScO3:xBi3+,yTb3+,zEu3+ phosphors was investigated. By changing the ratio of x, y, and z, trichromatic can be obtained in the LaScO3 host, including red, green, and blue emission with peak centered at 613, 544, and 428 nm, respectively. Therefore, two kinds of white light-emitting phosphors were obtained, LaScO3:0.02Bi3+,0.05Tb3+,zEu3+ and LaScO3:0.02Bi3+,0.03Eu3+,yTb3+. The energy transfer was characterized by decay times of the LaScO3:xBi3+, yTb3+, zEu3+ phosphors. Moreover absolute internal QY and CIE chromatic coordinates are shown. The potential optical thermometry application of LaScO3:Bi3+,Eu3+ was based on the temperature sensitivity of the fluorescence intensity ratio (FIR). The maximum Sa and Sr are 0.118 K−1 (at 473.15 K) and 0.795% K−1 (at 448.15 K), respectively. Hence, the LaScO3:Bi3+,Eu3+ phosphor is a good material for optical temperature sensing.  相似文献   

11.
《Ceramics International》2016,42(5):5737-5742
The novel red-emitting Eu3+ ions activated CaGd2(MoO4)4 phosphors were prepared by a citrate sol–gel method. The X-ray diffraction patterns confirmed their tetragonal structure when the samples were annealed above 600 °C. The photoluminescence excitation spectra of CaGd2(MoO4)4:Eu3+ phosphors exhibited the charge transfer band (CTB) and intense f–f transitions of Eu3+ ion. The optimized annealing temperature and Eu3+ ion concentration were analyzed for CaGd2(MoO4)4:Eu3+ phosphors based on the dominant red (5D07F2) emission intensity under NUV (394 nm) excitation. All decay curves were well fitted by the single exponential function. These luminescent powders are expected to find potential applications such as WLEDs and optical display systems.  相似文献   

12.
Developing environment-friendly dual-emission phosphors of both blue–cyan and deep-red lights is desirable for the utilized indoor plant lighting research. Notably, the naked 6s and 6p Bi3+ ions are sensitive to the lattice sites, which emit from Ultraviolet (UV) to red lights in various crystal compounds. Meanwhile, the 2E → 4A2g transition of Mn4+ ions promises its deep-red light emissions, which satisfies the demand for specific wavelength lights for plants growth. Hence, a Bi3+/Mn4+ co-doped Sr2LaGaO5: Bi3+, Mn4+ (SLGO:Bi3+:Mn4+) phosphor was finally synthesized. The phase, micromorphology and luminescent properties were systematically evaluated. Upon excitation at 350 nm light, dual emissions of both blue–cyan (470 nm) and deep-red (718 nm) lights were observed. Besides, due to the pronounced photoluminescence (PL) spectral overlap between Bi3+ and Mn4+ ions, a potential energy transfer process from Bi3+ to Mn4+ ions was confirmed. The relative PL intensities between Bi3+ and Mn4+ ions can be tuned just by adjusting the Mn4+ ion concentration. Besides, Li+ co-doping has been evidenced to improve the deep-red emissions (718 nm) of SLGO:0.005Mn4+ due to charge compensation and rationally designed lattice distortion, together with the improved thermal stability. Finally, the emissions of SLGO:Bi3+, Mn4+, Li+ phosphor suit properly with the absorption of the four fundamental pigments for plant growth, indicating that the prepared phosphorescent materials may have a prospect in plant light-emitting diodes lighting.  相似文献   

13.
The structural and optical characteristics of Nd3+-Yb3+ doped CaF2 phosphors with and without the addition of Li+ ions are described in this work. The phosphors synthetized by hydrothermal and co-precipitation methods showed near-infrared (NIR) luminescence emission associated with inter-electronic transition of the Yb3+ ion in the range of 900–1050 nm via energy transfer process from Nd3+ ions under visible light excitation. The addition of Li+ to these phosphors resulted in an improvement of the NIR luminescence intensity by a factor up to 5. The effect of the incorporation of Li+ ions into the CaF2 crystallite structure, the reduction of luminescence quenching states, as well as the energy transfer mechanism involved are discussed.  相似文献   

14.
Dy3+:Eu3+ doped calcium sulfate (CaSO4:Dy3+,Eu3+) phosphors co-doped with various K+ compensator concentrations were synthesized by recrystallization method. These orthorhombic phased phosphors showed intense multi-color near white light. The multi-color aspect ratios and the emission life times were strongly dependent on K+-concentration. These results suggest that the rare-earth (Re3+) ions are situated at the sites of Ca2+ and the site occupancy was being compensated by K+ ions. The near white light emission and large lifetimes suggest that present phosphor could be potentially applied as a blue excited white light-emitting phosphor for light emitting diodes.  相似文献   

15.
In this work, we present a facile preparation approach of Au nanoparticles embedded LaPO4:Eu3+ inverse opal photonic crystals. In the typical preparation process, the transparent LaPO4:Eu3+ sol including HAuCI4 was infiltrated into the opal templates. After the sintering, the 10‐20 nm Au nanoparticles were formed in the interior of nano‐sized wall of LaPO4:Eu3+ inverse opal and the Au nanoparticles embedded LaPO4:Eu3+ inverse opals were obtained. The luminescence of Au nanoparticles embedded LaPO4:Eu3+ inverse opal was investigated. The emission peaks located at the 593 (5D07F1), 618 (5D07F2) and 698 nm (5D07F4) from Eu3+ ions were observed. The 593, 618, and 698 nm emissions of Au nanoparticles embedded LaPO4:Eu3+ inverse opals were enhanced in contrast to these of LaPO4:Eu3+ inverse opal without the Au nanoparticles, which is from the excitation field enhancement caused by the localized surface plasmon resonance of Au nanoparticles.  相似文献   

16.
《Ceramics International》2017,43(8):6472-6476
Spherical-like Tb3+ and Eu3+ co-doped Gd2O3 nanoparticles with a particle size around 5.5 nm were synthesized by a polyol route. The optimized luminescence property was obtained when 5 mol% Tb3+ and 2 mol% Eu3+ were co-doped. The influence of different polyalcohol solvents (DEG/PEG) on particle size and luminescence properties was investigated. The results show that the nanoparticles Gd2O3:5%Tb3+ prepared in PEG presented greater particle size (around 79 nm) and higher luminescence intensity.  相似文献   

17.
《Ceramics International》2016,42(11):13004-13010
A series of Dy3+ or/and Eu3+ doped Y2Mo4O15 phosphors were successfully synthesized at a low temperature of 600 °C via solid state reaction. The as-prepared phosphors were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM), photoluminescence (PL) excitation, emission spectra and PL decay curves. XRD results demonstrate that Y2Mo4O15: Dy3+, Eu3+ has the monoclinic structure with the space group of p21/C(14). Under the excitation of ultraviolet (UV) or near-UV light, the Dy3+ and Eu3+ ions activated Y2Mo4O15 phosphors exhibit their characteristic emissions in the blue, yellow and red regions. The emitting light color of the Y2Mo4O15: 0.08Dy3+, yEu3+ phosphors can be adjusted by varying the concentration ratio of Dy3+ to Eu3+ ions and a white light is achieved when the doping concentration of Eu3+ is 5%. In addition, the energy transfer from Dy3+ to Eu3+ is also confirmed based on the luminescence spectra and decay curves.  相似文献   

18.
Tb3+/Yb3+ co-doped Y2O3 transparent ceramics were fabricated by vacuum sintering of the pellets (prepared from nanopowders by uniaxial pressing) at 1750 °C for 5 h. Zr4+ and La3+ ions were incorporated in Tb3+/Yb3+ co-doped Y2O3 nanoparticle to reduce the formation of pores which limits the transparency of ceramic. An optical transmittance of ∼80% was achieved in ∼450 to 2000 nm range for 1 mm thick pellet which is very close to the theoretical value by taking account of Fresnel’s correction. High intensity luminescence peak at 543 nm (green) was observed in these transparent ceramics under 976 and 929 nm excitations due to Yb–Tb energy transfer upconversion.  相似文献   

19.
《Ceramics International》2023,49(1):579-590
A novel single-phase trivalent europium activated red-emitting SrLaNaTeO6 phosphor was first synthesized in a process of traditional high-temperature solid-state. The phase purity, morphology, and spectroscopy of the prepared phosphor were analyzed. Under 395 nm excitation, the photoluminescence (PL) spectra of the SrLaNaTeO6:Eu3+ products mainly contained five dominant sharp peaks. The intense red emission peak at 615 nm was the typical 5D07F2 electric dipole transition of Eu3+. The optimum product of high quenching concentration was the SrLaNaTeO6:0.90Eu3+, which reached a high internal quantum efficiency (IQE) of 90.6%. The SrLaNaTeO6:0.90Eu3+ was estimated to have Rc of 6.57 Å and possessed high color purity of 100.0%. The phosphors exhibited excellent thermal stability and high activation energy (Ea = 0.29 eV). The prepared white light-emitting diode (WLED) had a high color rendering index (CRI) Ra of 92 and a low correlated color temperature (CCT) of 5008 K. In conclusion, the phosphors have potential as red components for WLEDs.  相似文献   

20.
《Ceramics International》2022,48(8):10895-10901
Mn4+ doped phosphors have been attracted more and more attention because their emitting spectra can be absorbed by chlorophyll or phytochrome (Pr and Pfr) of plants. Herein, we prepared a new series of phosphors BaLaLiTe1-xO6:xMn4+ (BLLT:xMn4+, x = 0.002–0.014) by solid state reaction method. Their structure and phase purity were verified by X-ray diffraction (XRD) analysis. Under 336 nm exciting, BLLT:xMn4+ can emit long wavelength red light at around 700 nm, which fits well with the Pfr spectra of plants. The Mn4+ concentration was optimized to be x = 0.01, and when it was exceeded, concentration quenching would occur. The internal (IQE) and external quantum efficiency (EQE) of BLLT:0.01Mn4+ were measured to be 32% and 23% by direct method. Besides, the BLLT:0.01Mn4+ possesses good thermostability, remaining 76% of the integrated intensity at 423 K of that at 298 K. Hence, we think BLLT:0.01Mn4+ have potentially applications for plant growth LED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号