首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(5):6273-6281
This work deals with some physical investigation on SnO2–ZnSnO3 ceramics grown on glass substrates at different temperatures (450 °C and 500 °C). Structural and optical properties were investigated using X-Ray diffraction (XRD), Raman, infrared (IR) absorption (FTIR), UV–visible spectroscopy and Photoluminescence (PL) techniques. XRD results revealed the existence of a mixture of SnO2/ZnSnO3 phases at different annealing temperatures. Structural analysis showed that both phases are polycrystalline. On the other hand, the optical constants (refractive index, extinction coefficient and the dielectric constants) have been obtained by the transmittance and the reflectance data. The optical band gap energy changed from 3.85 eV to 3.68 eV as substrate temperature increased from 450 °C to 500 °C. Raman, FTIR modes and PL reinforced this finding regarding the existence of biphasic (SnO2 and ZnSnO3) which is detected also by X-Ray diffraction analysis. Finally, the Lattice Compatibility Theory was evoked for explaining the unexpected incorporation of zinc ions in a rhombohedral structure within SnO3 trigonal lattice, rather than the occupation of SnO2 available free loci. All the results have been discussed in terms of annealing temperature.  相似文献   

2.
A simple electrochemical process has been demonstrated to grow highly oriented γ-CuI thin films on indium doped tin oxide (ITO) glass through reducing Cu(II)-ethylene diamine tetraacetic acid disodium (EDTA) complex in aqueous solutions at or near room temperature. The CuI thin films grow preferential orientation along the 〈1 1 1〉 crystal axis from the X-ray diffraction patterns. The oriented growth of the CuI thin films is not affected by the solution pH and the applied potentials. The possible mechanism of the oriented growth is discussed, and the surface energy of different crystal planes of CuI crystal is believed to play an important role to control the oriented growth of the CuI thin films. The bandgap of the electrodeposited CuI films is 2.98 eV and the photoluminescence spectra of the CuI thin films exhibit relative intense exciton band luminescence at room temperature.  相似文献   

3.
WC–C nanocomposite film was prepared by using a hybrid deposition system of r.f.-PACVD and DC magnetron sputtering. W concentration in the film was varied from 5.2 to 42 at.% by changing the CH4 fraction of the mixture sputtering gas of Ar and CH4. Hardness, residual compressive stress and electrical resistivity were characterized as a function of W concentration. Raman spectroscopy, XRD and high resolution TEM were employed to analyze the structural change in the film for various W concentrations. In the present W concentration range, the film was composed of nano-sized WC particles of diameter less than 5 nm and hydrogenated amorphous carbon matrix. Content of the WC particles increased with increasing W concentration. However, the mechanical properties of the film increased only when the W concentration was higher than 13 at.%. Structural analysis and electrical conductance measurements evidently showed that the increase in hardness and residual stress occurred as the WC particles were in contact with each other in the amorphous carbon matrix.  相似文献   

4.
《Ceramics International》2016,42(12):13697-13703
Cu–Cr–O films were prepared by DC magnetron co-sputtering using Cu and Cr targets on quartz substrates. The films were then annealed at temperatures ranging from 400 °C to 900 °C for 2 h under a controlled Ar atmosphere. The as-deposited and 400 °C-annealed films were amorphous, semi-transparent, and insulated. After annealing at 500 °C, the Cu–Cr–O films contained a mixture of monoclinic CuO and spinel CuCr2O4 phases. Annealing at 600 °C led to the formation of delafossite CuCrO2 phases. When the annealing was further increased to temperatures above 700 °C, the films exhibited a pure delafossite CuCrO2 phase. The crystallinity and grain size also increased with the annealing temperature. The formation of the delafossite CuCrO2 phase during post-annealing processing was in good agreement with thermodynamics. The optimum conductivity and transparency were achieved for the film annealed at approximately 700 °C with a figure of merit of 1.51×10−8 Ω−1 (i.e., electrical resistivity of up to 5.13 Ω-cm and visible light transmittance of up to 58.3%). The lower formation temperature and superior properties of CuCrO2 found in this study indicated the higher potential of this material for practical applications compared to CuAlO2.  相似文献   

5.
The electrocaloric effects (EC) of PZT and PMN–PNN–PZT films were evaluated. PZT and PMN–PNN–PZT thin films with a thickness of 500 nm were fabricated by state-of-the-art chemical solution deposition from a precursor solution with PZT and (PMN?PNN)/PZT=30/70. The polarization hysteresis loop was found to be slim and nonlinear, with smaller hysteretic behavior compared with PZT. The pyroelectric properties evaluated from polarization change and current measurement show that the properties of PMN–PNN–PZT films are superior to those of non-doped PZT films. The electrocaloric temperature changes ΔT due to applied ΔE were calculated. PZT and PMN–PNN–PZT films exhibited ΔT of 2.1 K and 3.6 K at 237.5 °C under a field of 500 kV/cm, respectively. Thermal-electrical energy converters based on pyroelectric effects were investigated for energy harvesting and possible use in ultralow-power sensor modules. The possibilities of pyroelectric energy harvesting using these PZT films were also investigated.  相似文献   

6.
ZnO–In2O3 heterostructure nanowires were grown on a Si (111) substrate using the thermal evaporation method. Scanning electron microscopy results showed that the ZnO nanowires had spherical caps. The X-ray diffraction (XRD) pattern and energy-dispersive X-ray (EDX) spectrum indicated that these caps were In2O3. An analysis of the early growth process revealed that indium oxide might have played a self-catalytic role. Therefore, it was plausible that the vapor–liquid–solid mechanism (VLS) was responsible for the growth of the ZnO–In2O3 heterostructure nanowires. The optical properties of the products were characterized using a photoluminescence (PL) technique. The PL results for the ZnO–In2O3 heterostructure nanowires showed a strong peak in the ultraviolet region as a result of the near band emission and a negligible peak for the visible emissions that occurred as a result of the defects. Based on these PL results, it was found that the In2O3 nanostructures not only introduced the caps at the tips of the ZnO nanowires but also partially passivated the nanowire surfaces, leading to an improved near band edge emission and the suppression of the defect luminescence.  相似文献   

7.
《Ceramics International》2019,45(10):12814-12819
Zn–Ti–O films were co-sputtered from Zn and Ti targets and then annealed at temperatures ranging from 600 °C to 900 °C for 2 h under an air atmosphere. The [Ti]/([Ti]+[Zn]) ratio decreased from 75.52 to 28.26 as the Zn-target power increased from 25 W to 75 W. The phase transition of the films strongly depended on the [Ti]/([Ti]+[Zn]) ratio. High [Ti]/([Ti]+[Zn]) ratios led to the coexistence of ZnTiO3, Zn2Ti3O8, and rutile TiO2 phases. Zn2Ti3O8 gradually became the major crystalline phase as the [Ti]/([Ti]+[Zn]) ratio and rutile TiO2 and ZnTiO3 phases decreased. The aforementioned phases disappeared when the [Ti]/([Ti]+[Zn]) ratio was especially low. In their place, Zn2TiO4 and even ZnO phases developed. The dielectric constant of the films increased with increasing [Ti]/([Ti]+[Zn]) ratio. However, extremely high [Ti]/([Ti]+[Zn]) ratios increased the dielectric loss of the films. The film mainly composed of the Zn2Ti3O8 phase exhibited optimal dielectric properties, including a dielectric constant and loss equal to 40.1 and 0.0304, respectively, at 1 MHz.  相似文献   

8.
Polyamide 6–66 (PA6-66)–montmorillonite (MMT)–nanosilica (NS) nanocomposite films were fabricated through a cast film process and then biaxially stretched on a laboratory stretcher. Uniaxial or biaxial stretching induced the elongated conformation of MMT and NS. The b axis of the α crystals and the amorphous phase were revealed to align along the machine direction (MD) after stretching, with the uniaxial orientation playing a more significant role. Furthermore, the crystallinity of PA6-66 stretching increased with the stretching ratio. Uniaxial stretching gave rise to a significantly enhanced tensile strength along the MD, whereas it slightly decreased the mechanical properties along the transverse direction (TD). In contrast, the films subjected to biaxial stretching exhibited more balanced mechanical properties. Uniaxial and biaxial stretching led to decreased transmittance and increased haze in the PA6-66–MMT–NS films; this could have been due to the elongated nanostructure of the two nanofillers, which inhibited the transmission and facilitated the scattering of visible light. The thermal shrinkage of the films increased with increasing stretching ratio, and the biaxially oriented films presented nearly equal shrinkage in the MD and TD. The addition of nanofillers decreased the shrinkage attributed to the mobility inhibition of the polymer chains during heating. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47504.  相似文献   

9.
10.
High-quality polycrystalline ZnO thin films were deposited onto alkali-free glasses at a temperature of 300°C in air ambience by combining sol–gel spin coating and KrF excimer laser annealing. The effects of laser irradiation energy density on the crystallization, microstructure, surface morphology, and optical transmittance of as-prepared ZnO thin films were investigated and compared to the results of thermally annealed ZnO thin films. The crystallinity level and average crystallite size of laser annealed ZnO thin films increased as laser energy density increased. The crystallinity levels and average crystallite size of excimer laser annealed (ELA) thin films were greater than those of the thermally annealed (TA) thin films. However, laser annealed thin films had abnormal grain growth when irradiation energy density was 175 mJ/cm2. Experimental results indicated that the optimum irradiation energy density for excimer laser annealing of ZnO sol–gel films was 150 mJ/cm2. The ELA 150 thin films had a dense microstructure, an RMS roughness value of 5.30 nm, and an optical band gap of 3.38 eV, close to the band gap of a ZnO crystal (3.4 eV).  相似文献   

11.
Al-doped BiFeO3 (BiFe(1?x)AlxO3) thin films with small doping content (x=0, 0.05, and 0.1) were grown on Pt(111)/TiO2/SiO2/Si substrates at the annealing temperature of 550 °C for 5 min in air by the sol–gel method. The crystalline structure, as well as surface and cross section morphology were studied by X-ray diffraction and scanning electron microscope, respectively. The dielectric constant of BiFeO3 film was approximately 71 at 100 kHz, and it increased to 91 and 96 in the 5% and 10% Al-doped BiFeO3 films, respectively. The substitution of Al atoms in BiFeO3 thin films reduced the leakage current obviously. At an applied electric field of 260 kV/cm, the leakage current density of the undoped BiFeO3 films was 3.97×10?4 A/cm2, while in the 10% Al-substitution BiFeO3 thin films it was reduced to 8.4×10?7 A/cm2. The obtained values of 2Pr were 63 μC/cm2 and 54 μC/cm2 in the 5% and 10% Al-doped BiFeO3 films at 2 kHz, respectively.  相似文献   

12.
An electrochemical deposition technique was used to synthesis hexagonal nano-funnel tube films on zinc foil, utilizing an electrolyte of ZnCl2+H2O2 under ambient conditions. The structures, morphologies, chemical compositions, and optical properties of the synthesized films were characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible diffuse reflectance spectrometry (UV-vis-DRS), photoluminescence (PL) spectrometry, and energy-dispersive X-ray spectrometry (EDS) techniques. The XRD pattern showed a set of diffraction peaks that were indexed to the ZnO, Zn(OH)2, and Cu phases. The SEM observations revealed a cauliflower-like morphology consisting of branches in the form of nano-funnel tubes. The TEM results demonstrated that the synthesized film was comprised of several branches. The EDS studies confirmed the presence of only Cu, Zn, and O atoms. The UV-vis-DRS spectrum showed the onset of the band gap absorption peak at ~375 nm. The PL studies evaluated various emission bands that originated from different defect mechanisms. In addition, the hexagonal nano-funnel tube film showed a good superhydrophobicity, with a water contact angle of ~153°.  相似文献   

13.
Recognizing and controlling the metal-insulator transition (MIT) in VO2 transition-metal oxides is interesting for the future electronic devices. However, the effect of the electron correlation for the structure-coupled MIT in VO2 is as yet an open question. In this study, we present for the first time direct spectroscopic evidence for the charge-transfer assistance bandwidth controlled MIT (BC-MIT) in Au–VO2 nanocomposite thin films (NCTFs). A significantly enhancement of the MIT temperature (about 350 K) is realized in Au–VO2 films with Au volume ratio of 1.1 mol%. However, by further increasing Au ratios, the MIT temperature in Au–VO2 NCTFs is downward shifted by ~16 K and forward shifted 6 K. The V L-edge and O K-edge have been investigated. The basic electronic parameters such as the covalency (W) have been tuned. The relationship between bandwidth and the MIT temperature has been clearly elucidated a linear relationship. The experimental results demonstrate that MIT in VO2 is BC-MIT which improved our understanding of the electron correlation effect in VO2 systems.  相似文献   

14.
Au–ZnO nanowire films have been synthesized by chemical routes, electrochemical deposition (ECD) and chemical bath deposition (CBD) techniques, on zinc foil followed by annealing in air at 400 °C. X-ray diffraction patterns reveal formation of the ZnO wurtzite structure along with binary phases Au3Zn and AuZn3. Scanning electron microscopy shows the presence of ZnO nanowires having several micrometers in length and less than 120 nm in diameter synthesized by ECD and in the range of 70–400 nm using the CBD technique. During the annealing process, different surface morphologies originating from different catalytic effects of Au atoms/layers were observed. In addition, the effect of synthesis routes on crystalline quality and optical properties were studied by Raman and photoluminescence spectrometers indicating varying concentration of defects on the films. The Raman results indicate that Au–ZnO nanowire film prepared by chemical bath deposition route had better crystalline quality.  相似文献   

15.
Lead zirconate titanate (PZT) precursor sols were prepared using a triol based sol–gel route. Inorganics salts metal alkoxides lead acetate trihydrate [Pb(OOCCH3)2·3H2O], titanium (IV) isopropoxide [Ti(OCH(CH3)2)4], and zirconium n-propoxide [ZrOC3H7)4] were used as starting materials. Thin films were deposited by spin coating onto Pt/Ti/SiO2/Si substrates. The samples were pre-heated (pyrolysis) on a calibrated hotplate over the temperature range of 200–400 °C for 10 min then firing at a temperature of 600 °C for 30 min. Randomly-oriented PZT thin films pre-heated at 400 °C for 10 min and annealed at 600 °C for 30 min showed well-defined ferroelectric hysteresis loops with a remanent polarization of 27 μC/cm2 and a coercive field of 115 kV/cm. The dielectric constant and dielectric loss of the PZT films were 621 and 0.040, respectively. The microstructures of the thin films are dense, crack-free and homogeneous with fine grains about 15–20 nm in size.  相似文献   

16.
《Ceramics International》2016,42(6):7278-7283
Nanocomposite thin films consisting of titanium oxide (TiO2) nanoparticles (NPs) and graphene oxide (GO) platelets were deposited by a spin-coating technique. The obtained films were submitted to direct laser irradiation using a frequency quadrupled Nd:YAG (λ=266 nm, τFWHM≅3 ns, ν=10 Hz) laser source. The effect of the laser processing conditions, as laser fluence value and number of subsequent laser pulses incident onto the same target location, on the surface morphology, crystalline structure, and chemical composition of the TiO2/GO nanocomposite thin films was systematically investigated. The laser fluence values were maintained below the vaporization threshold of the irradiated composite material. With the increase of the laser fluence and number of incident laser pulses melting and coalescence of the TiO2 NPs into inter-connected aggregates as well as rippling of the GO platelets take place. The gradual reduction of GO platelets and the onset of anatase to rutile phase transition were observed at high laser fluence values.  相似文献   

17.
In this work, we studied optical properties of pure and Nb-doped TiO2 synthesized using a sol–gel method and deposited as thin films by spin-coating followed by annealing in air at 500 °C for 1 h. The surface elemental composition was derived from X-ray photoelectron spectra, while structure and surface morphology were investigated using X-ray diffraction and atomic force/scanning electron microscopy. Finally, the optical properties were investigated by means of UV–vis spectrophotometry and spectroscopic ellipsometry.The Nb content was determined from XPS measurements to vary between 1.8 and 4.3 at%. The XRD patterns of the deposited thin films, with a maximum thickness of about 56 nm, showed no diffraction peaks. As proven both by microscopy and spectroscopic ellipsometry studies doping TiO2 with Nb modified the surface morphology of the samples; the grain size is increasing while the surface roughness decreases with the increase in Nb content. This is accompanied by a decrease in the refractive index and an increase of the extinction coefficient.  相似文献   

18.
The Pd content dependence of the crystallization process of Ti–Ni–(19.1–35.3)Pd (at. %) thin films fabricated by a sputter-deposition method was investigated. Ti–Ni–(19.1–26.1)Pd (at. %) as-deposited thin films were found to be amorphous, whereas Ti–Ni–(29.1–35.3)Pd (at. %) thin films were crystalline in the as-deposited condition. Both the crystallization temperature and activation energy for the crystallization of the amorphous thin films decrease with increasing Pd content. The shape memory effect was confirmed in the in situ crystallized thin film. The finer grain size in the in situ crystallized thin film results in a higher critical stress for slip and a smaller recovery strain when compared with the thin film crystallized by post annealing.  相似文献   

19.
Transparent fluorotellurite glass-ceramics have been obtained by heat treatment of precursor Er-doped TeO2–ZnO–ZnF2 glasses. ErF3 nanocrystals nucleated in the glass-ceramics have a typical size of 45 ± 10 nm. Based on the Judd-Ofelt theory, the main radiative parameters for the 4I13/2  4I15/2 transition have been obtained. The split of the absorption and emission bands and the reduction of the Ω2 parameter, as compared to the glass, confirm the presence of Er3+ ions in a crystalline environment in glass-ceramic samples. The analysis of the 4I13/2 decays suggests that a fraction of Er3+ ions remains in a glass environment while the rest forms nanocrystals. For the glass-ceramics, intense red and green upconversion emissions were observed with an enhancement of the 4F9/2  4I15/2 red one compared to the glass sample. The temporal evolution of the red emission together with the excitation upconversion spectra suggests that energy transfer processes are responsible for the enhancement of the red emission.  相似文献   

20.
Heteroepitaxial growth of conductive Si-doped β-Ga2O3 films on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD) was successfully performed. The effect of Si content on the structural, morphological, electrical and optical properties of Si-doped β-Ga2O3 films was investigated in detail. Distinctive surface morphology evolution of films depending on Si content was observed and presented. The Si-doped β-Ga2O3 films exhibited high transmittance in the ultraviolet-visible regions. The temperature-dependent PL was carried out especially to discuss the photoluminescence properties of Si-doped β-Ga2O3 films. More importantly, the results suggested that the conductivity of heteroepitaxial Si-doped β-Ga2O3 films by MOCVD could be realized and controlled by adjusting the Si content. The minimum resistivity of 1.79×10?1 Ω·cm was obtained for the films grown under the SiH4 flow rate of 0.08 sccm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号