首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
为了解大豆ClassⅠ几丁酶基因(Chitinase gene)对不同胁迫响应的分子机制。利用PCR技术克隆了大豆ClassⅠChitinase基因的启动子片段(Gm CHI1p),序列分析表明,扩增片段(1 641 bp)与Gen Bank中的已知序列同源性达99.8%,且含有多个胁迫响应调控元件。利用GUS基因上游无启动子的表达载体p CAMBIA1391Z,构建GmCHI1p与GUS基因融合的植物表达载体pCAM-Gm CHI1p,并通过农杆菌介导法导入烟草中。在转基因烟草愈伤组织中检测到GUS活性,表明该启动子具有启动活性。对转基因烟草中的GUS活性进行初步定性分析,结果表明,GmCHI1p可驱动GUS基因在转基因烟草的根部特异性表达,而且在伤害处理的叶片中检测到GUS的强烈表达,表现出明显的根组织特异性及伤害诱导性。这种伤害诱导仅在伤害组织部位及其附近高效表达而没有被长距离传递,预计该启动子在转基因抗虫分子育种中具有巨大的应用前景。  相似文献   

2.
通过对报告基因GUS产物的分析进行了拟南芥2-甲基-6-叶绿基-1,4-苯醌甲基转移酶(MPBQ MT)启动子在转基因烟草中的表达特性的初步研究。构建含该启动子和GUS报告基因的植物表达载体,通过农杆菌介导转化烟草,对转基因烟草进行GUS组织化学染色和GUS荧光定量分析该启动子表达特性。GUS在转基因烟草的根和种子中基本不表达,茎上有一定表达,叶上表达量最高,约是茎的4.7~10.9倍。结果表明MPBQ MT基因启动子主要在烟草绿色组织中特异性高表达。  相似文献   

3.
rd29A启动子的克隆及提高烟草抗逆性的研究   总被引:4,自引:0,他引:4  
根据GenBank上公布的rd29A基因序列(D13044),利用PCR方法从拟南芥(Arabidopsis thaliana)基因组DNA中扩增得到了rd29A基因的启动子片段.序列分析表明,该片段与D13044有99%的同源性,它包括了DRE等4种完整的顺式作用元件.与GUS基因融合构建双元植物表达载体pBI-rd.转基因烟草的GUS活性组织染色分析及Northern杂交分析均表明,3种胁迫处理均可诱导GUS基因大量表达.其中,15%PEG和0.5%NaCl胁迫处理的转基因烟草比0℃低温处理的转基因烟草的GUS表达量高,而未经胁迫处理的转基因烟草的GUS基因只有少量表达.这些结果表明,rd29A属胁迫诱导型启动子,当植物遭受逆境胁迫时,rd29A启动子可以驱动下游目的基因超量表达,这就为通过基因工程途径提高植物抗逆性奠定了基础.  相似文献   

4.
二酰甘油酰基转移酶(DGAT)是催化三酰甘油生物合成的关键酶,在三酰甘油的合成和积累过程中具有重要调控作用。为了研究大豆DGAT基因表达调控的分子机制,以大豆品种科丰1号为材料,通过PCR方法对GmDGAT1A的启动子(promoter-GmDGAT1A,pGmDGATIA)进行克隆,并通过转化拟南芥和GUS组织定位研究其功能。结果表明:以大豆叶片DNA为模板,成功克隆到GmDGAT1A基因ATG上游2 192 bp启动子序列。序列分析表明,pGmDGAT1A除具有启动子所必需的TATA-box和CAAT-box等基本顺式作用元件外,还含有多个响应于光、赤霉素和脱落酸等顺式作用元件。以GUS为报告基因,成功构建了植物表达载体pCAMBIA1381Z-pGmDGAT1A,并转化野生型拟南芥获得转基因植株。对转基因拟南芥植株进行PCR检测,能扩增到2 192 bp目标条带,表明已获得含有pGmDGAT1A的转基因拟南芥阳性植株。GUS组织化学染色结果显示,转基因拟南芥幼苗的叶脉和根染色较深,但是主根和侧根的根尖部分未染色;成熟期转基因拟南芥植株的根、叶脉以及角果内的隔膜和珠柄染色较深,茎和发育的种子未染色,表明pGmDGAT1A驱动的GUS主要在转基因拟南芥的根、叶脉以及角果内的隔膜和珠柄中表达。综上,克隆的大豆GmDGAT1A启动子具有活性,能够驱动下游目标基因的表达,有望应用于转基因育种。  相似文献   

5.
研究大豆蔗糖结合蛋白基因(sbp)的表达方式及其启动子的调控活性,为揭示sbp基因表达本质及其启动子功能研究、利用提供理论依据。利用qRT-PCR方法,检测sbp基因在不同逆境胁迫条件下及不同组织中的表达方式;利用PCR方法,克隆sbp基因5'端上游序列并对其进行预测分析;在转基因烟草中,研究sbp基因启动子在干旱胁迫条件下及不同组织中的调控活性。sbp基因受干旱诱导上调,而在盐、低温、ABA诱导下表达下降。sbp基因在大豆根、茎、叶、花中的相对表达量低,而在种子中的相对表达量高。克隆获得sbp基因5'端上游942 bp序列,命名为SP,预测分析表明,SP序列中含有多种典型的种子特异表达元件及与激素、逆境诱导相关的元件。组织化学分析表明,在转基因烟草中,SP启动子驱动gus基因在干旱胁迫下及种子中高表达。推测SP启动子兼具干旱诱导表达活性和种子特异表达特性。  相似文献   

6.
以吉豆2号基因组为模板,通过TAIL PCR方法,扩增得到大豆硬脂酸-ACP脱饱和酶基因启动子片段SACPD-Cp。PLACE在线启动子预测分析表明, 该序列中含有多种典型的种子特异性表达序列元件。将SACPD-Cp片段取代pCAMBIA1301质粒中的CaMV35S启动子,构建表达载体pCAM-SACPD-Cp,通过农杆菌介导法在大豆组织中进行瞬时表达,GUS组织化学染色和荧光定量研究其表达特性。结果表明, SACPD-Cp驱动GUS基因在种子中的表达活性是CaMV35S启动子的93.01%;SACPD-Cp启动子与现已知启动子无同源性,仅在大豆种子中检测到GUS活性,而在根、茎和叶组织中均未检测到GUS活性,证实 SACPD-Cp是一个新的种子特异性启动子。  相似文献   

7.
WRKY蛋白属于锌指型转录调控因子,参与植物生长发育及耐逆响应。以陆地棉遗传标准系TM-1为材料,克隆Gh WRKY64(KF031101)基因上游1064 bp的启动子序列,并对其调控元件及功能进行分析。生物信息学分析表明,该区域含18个组织器官表达及诱导表达关键元件,分别为6个ROOTMOTIFTAPOX1根特异调控元件,4个CACTFTPPCA1叶肉特异性调控元件、4个OSE2ROOTNODULE病菌诱导元件、2个GTIGMSCAM4盐调控元件和2个W-box胁迫应答响应元件。将该启动子与GUS基因融合,构建p BIW64:GUS植物表达载体,通过农杆菌介导叶盘转化法获得12个转基因烟草株系。选择GUS表达量最高的p BIW64-5进行转基因不同组织器官表达及诱导表达分析。GUS组织化学染色显示,苗期的转基因烟草植株在叶和根部均具有GUS活性,开花期在转基因烟草植株根、叶及叶柄均检测到GUS活性,特别在转基因烟草的根及根尖部分染色更深,在茎和花组织上未检测到GUS活性。对该转基因烟草幼苗进行黄萎病菌诱导处理,诱导48 h后,转基因烟草幼苗根和叶片的GUS染色比未诱导处理的对照明显加深。结果表明,Gh WRKY64上游1064 bp长度的DNA序列,具有启动子的相关顺式作用元件,且为病原菌诱导型启动子。该启动子可为开展棉花抗黄萎病转基因研究提供调控元件。  相似文献   

8.
利用Affymetrix水稻表达芯片分析了超级稻两优培九母本培矮64S(Oryza sativa L.)在经过低温、干旱、高温等逆境条件胁迫处理后,不同组织器官在不同的生长发育时期全基因组的表达差异。筛选到一个在正常条件和逆境条件下均有较高表达水平的基因Os SG4(Gen Bank登录号:AK068991.1),从水稻日本晴基因组中克隆得到其上游启动子区域Ospz4(1 625 bp),将其与GUS报告基因融合构建植物表达载体p CAMBIA1301P4,并用农杆菌介导法转化台北309获得转基因植株。组织化学染色结果表明,Ospz4启动子可驱动GUS报告基因在转基因水稻植株的叶片,根、茎、颖花、胚乳及胚芽鞘中均有表达。在该启动子的基础上,构建了4个不同长度的5'端缺失片段启动子与GUS报告基因融合的植物表达载体,通过注射烟草(Nicotiana benthamiana)进行瞬时表达分析,结果表明,4个片段均可驱动GUS基因的表达,其中最短片段(492 bp)的表达活性最强。本研究表明Ospz4启动子可用于研究与遗传改良生产,具有重要的理论与实践价值,并有助于该启动子的改造。  相似文献   

9.
研究植物种子特异启动子具有重要的理论和实际意义。本文研究了棉花α球蛋白A基因启动子,该启动子序列全长为1640 bp,作用元件分析表明该区域除了具有核心调控序列外,还含有多个与组织特异性相关的顺式作用元件。设计其5'端构建4个不同长度的缺失、融合GUS基因的表达载体,并通过蘸花法分别转化拟南芥。转基因拟南芥GUS表达分析结果表明,该启动子能驱动GUS基因在胚、露白的种子、子叶期的幼苗中表达,而二叶期的幼苗、根、茎、莲座叶、茎生叶和花苞组织则没有表达,说明棉花α球蛋白A基因启动子是一个种子特异性启动子。208 bp长度的启动子足以维持其种子特异表达功能,而且在启动子的-684和-208区域之间可能存在负调控元件或负调控区域。分析棉花α球蛋白A基因启动子是一个种子特异性启动子,其基本启动子区域不长于208 bp。  相似文献   

10.
大豆紫色酸性磷酸酶基因GmPAP14受低磷诱导表达,其超表达显著提高植物有机磷利用效率,为进一步探究其调控机制,本研究以GmPAP14cDNA序列检索大豆参考基因组,获取基因上游启动子序列,设计引物克隆了中黄15 GmPAP14启动子序列。利用PLACE与PlantCARE预测启动子调控元件发现,该序列中含有增强子调控元件、组织特异表达元件,根特异表达元件、转录因子PHR1结合的PIBS元件等。构建了GmPAP14启动子3个5’端缺失片段融合GUS的植物表达载体PGmPAP14-2568-GUS、PGmPAP14-2238-GUS、PGmPAP14-1635-GUS,并通过Floraldip法获得转基因拟南芥。利用GUS染色和活性测定分析GmPAP14启动子不同片段表达活性发现,正常磷条件下各片段转基因拟南芥均在根尖表达,低磷条件下GUS染色可扩展到成熟区和根毛,另外转PGmPAP14-2238-GUS植株的GUS活性最高。这些结果为后续的基因调控研究奠定重要基础。  相似文献   

11.
于2012-2013年对GmGBPl过表达烟草植株的研究结果表明该基因在黑暗下促进植株的黄化,抑制子叶的展开、促进下胚轴的伸长。并且Gm,GBP1启动子启动GUS在转基因拟南芥中表达,GUS染色结果表明大豆GmGBPl启动子表达受黑暗强烈诱导,综上所述,该基因可能参与大豆暗形态建成过程。  相似文献   

12.
于2012-2013年对Gm GBP1过表达烟草植株的研究结果表明该基因在黑暗下促进植株的黄化,抑制子叶的展开、促进下胚轴的伸长。并且,Gm GBP1启动子启动GUS在转基因拟南芥中表达,GUS染色结果表明大豆Gm GBP1启动子表达受黑暗强烈诱导,综上所述,该基因可能参与大豆暗形态建成过程。  相似文献   

13.
启动子对基因时空表达的调控具有关键作用。本研究利用PCR克隆了一个水稻乙二醛酶(Glyoxalase)基因Os GLYI11.2的启动子区域片段(GenBank:AB017042.1),利用PlantCARE对该片段进行了顺式作用元件分析;构建了pOsGLYI11.2∷GUS表达载体并通过农杆菌介导转入水稻中,通过检测转基因植株中GUS基因在不同器官中的表达,分析了启动子的表达调控模式。结果显示:该启动子含有调控基因表达的7类调控顺式元件,能驱动GUS基因在水稻不同组织中(胚,胚芽鞘,花)表达。说明本研究所克隆的OsGLYI11.2基因上游2 120 bp的DNA片段具有启动子活性,能够驱动报告基因的表达。本研究结果可为进一步研究OsGLYI11.2基因在水稻中的功能及其相关调控机制提供基础。  相似文献   

14.
根据水稻碳酸酐酶基因5’端序列,从4处不同位置设计上游引物,在碳酸酐酶基因ATG前0位点处设计下游引物。通过PCR扩增基因5’端l600bp、964bp、585bp、313bp片段,将以上目的片段克隆到以GUS为报告基因的植物表达载体pBI121上,通过农杆菌介导法转化烟草。转化植株GUS活性检测结果,发现-1600-0bp片段启动GUS在烟草的叶、茎中有GUS活性,而其余3段区域(-964-0bp,-585-0bp,-313-0bp)未检测出GUS活性,这些暗示了-1600-0bp启动子区域在控制基因表达时,具有在叶、茎中表达,在根中不表达的组织特异性。  相似文献   

15.
高盐是小麦的主要非生物胁迫因子之一, 发掘小麦耐盐品种中的相关基因, 分析其调控机理, 有助于解析小麦耐盐性机制。本文利用TAIL-PCR和电子克隆的方法, 从耐盐小麦RH8706-49中克隆了耐盐基因TaSC的启动子序列, 命名为ProTaSC。该DNA序列中存在多个顺式作用元件, 包含与非生物胁迫响应有关的ABA响应元件(ABRE)和MYB蛋白结合位点(MBS)各1个。以GUS为报告基因, 对克隆的启动子序列及不同长度的5′端缺失片段的表达活性分析表明, 克隆的全长片段及2个5′端缺失的片段(681 bp和1096 bp)均能启动GUS表达, 而小于等于343 bp的片段不具备启动功能, 说明ProTaSC中从-681位到-343位核苷酸之间的区域为核心启动子区。在ProTaSC:GUS转基因拟南芥的根、叶片、花药、萼片及成熟角果的果荚壳中均检测到GUS蛋白, 而在主茎、花瓣、幼果和种子中没有检测到GUS, 表明ProTaSC是组织表达特异性启动子。对ProTaSC:GUS转基因拟南芥在NaCl (200 mmol L-1)和ABA (10 μmol L-1)胁迫处理后的GUS定量分析表明, ProTaSC是受NaCl和ABA显著诱导表达的功能序列。  相似文献   

16.
SSU5C启动子(全长1 438 bp)是从浮萍基因组中新克隆的一个rbc S(ribulose-1,5-bisphosphate carboxylase small subunit)启动子。本研究将SSU5C启动子与GUS基因融合,成功构建植物双元表达载p SSU5C-IGUS,并利用农杆菌介导法转化烟草,获得转基因植株,探究SSU5C启动子在烟草中的组织表达特点。GUS检测结果表明:在T1烟草的营养器官中,SSU5C启动子主要驱动GUS基因在烟草叶片和叶柄、茎等绿色组织中表达,而在根部不表达;在生殖器官中,GUS基因主要在花冠裂片以及花药和柱头中表达。本研究首次发现浮萍rbc S启动子不仅在绿色组织中表达,而且在生殖器官中的花冠裂片以及花药和柱头中表达,这一发现可为SSU5C启动子在植物基因工程中的应用奠定基础。  相似文献   

17.
GmDREB3基因能提高转基因烟草和拟南芥的抗逆性。利用SiteFinding-PCR技术, 从大豆品种铁丰8号基因组中分离到大豆抗逆基因GmDREB3启动子片段, 长度1 648 bp。该片段富含A/T碱基, 还含有TATA-box、低温响应元件MYC及其他顺式元件MYB、CAAT-box等。将该启动子分区段与GUS报告基因连接构建表达载体, 利用基因枪法转化小麦愈伤组织, 并进行干旱、高盐、低温等处理, 通过组织化学染色和GUS荧光定量测定分析各区段调控元件的活性。结果表明, 在干旱和低温的诱导下, 该启动子能激活下游GUS基因的表达, 在–285 ~ –1 117区域存在与低温和干旱应答有关的重要调控元件, 在–1 464 ~ –1 648区域内存在抑制启动子活性的调控元件。由此推断, 在逆境条件下通过启动子区域正、负调控元件的共同作用, 使GmDREB3基因的表达维持在一个恰当的水平。  相似文献   

18.
为获得低温诱导基因GmERF9启动子,并分析该启动子的功能,利用PCR技术从大豆叶片基因组DNA中克隆1885bp的GmERF9启动子序列GmERF9P。序列分析表明,GmERF9P序列中含有多种与逆境相关的顺式作用元件。将GmERF9P构建到植物表达载体pCAMBIA1301上并转化烟草。通过PCR检测共获得6株T_1阳性转基因烟草株系。对野生型烟草和转基因烟草进行低温处理2h,通过GUS组织化学染色和实时荧光定量PCR检测GUS基因的表达量。结果显示GmERF9P在低温处理下能够提高GUS基因的表达量,具有低温诱导启动活性。  相似文献   

19.
大豆抗逆基因GmDREB3启动子的克隆及调控区段分析   总被引:1,自引:0,他引:1  
GmDREB3基因能提高转基因烟草和拟南芥的抗逆性。利用SiteFinding-PCR技术, 从大豆品种铁丰8号基因组中分离到大豆抗逆基因GmDREB3启动子片段, 长度1 648 bp。该片段富含A/T碱基, 还含有TATA-box、低温响应元件MYC及其他顺式元件MYB、CAAT-box等。将该启动子分区段与GUS报告基因连接构建表达载体, 利用基因枪法转化小麦愈伤组织, 并进行干旱、高盐、低温等处理, 通过组织化学染色和GUS荧光定量测定分析各区段调控元件的活性。结果表明, 在干旱和低温的诱导下, 该启动子能激活下游GUS基因的表达, 在–285 ~ –1 117区域存在与低温和干旱应答有关的重要调控元件, 在–1 464 ~ –1 648区域内存在抑制启动子活性的调控元件。由此推断, 在逆境条件下通过启动子区域正、负调控元件的共同作用, 使GmDREB3基因的表达维持在一个恰当的水平。  相似文献   

20.
分离了金华中棉(Gossypiun arboreum var.jinhua)光诱导基因cab 5'上游的调控序列1 009 bp,并对其功能进行了分析,证明获得的这一DNA片段具有驱动光诱导表达的功能.为了进一步分离具有最大转录活性的最小光诱导启动子,根据光诱导表达调控元件所在的位置,构建了Gacab P和197 bp、504 bp、779 bp的5'端缺失体,并将这些缺失体分别与gus(uid A)基因融合,构建植物表达载体.用农杆菌介导法转化烟草,获得转基因烟草.GUS组织化学分析表明,转基因烟草的T1代种子在光下培养时,只有Gacab P驱动gus基因在转基因烟草的叶片表达,其他3个启动子驱动gus基因在转基因烟草的整个植株中均有表达;当转基因烟草的T1代种子在暗中萌发及培养时,GacabP驱动gus基因在转基因烟草中无表达,其他3个启动子驱动gus基因在转基因烟草的整个植株中均有表达.GUS定量分析表明,-504~-1 bp的启动子缺失体启动活性最高,比CaMV35S启动子高0.6倍.上述结果表明只有全长的Gacab启动子具有光诱导和绿色组织特异表达特性,且-504~-1 bp的启动子缺失体启动活性最高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号