首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
基于高光谱的柑橘叶片磷含量估算模型实验   总被引:7,自引:0,他引:7  
以117株园栽罗岗橙为实验对象,分别在壮果促梢期和采果期2个不同发育阶段采集234个数据样本,高光谱反射数据构成每个数据样本中的高维矢量描述,用化学方法测得磷含量值作为样本真实目标值,用偏最小二乘法(PLS)及支持矢量回归(SVR)2种多元回归分析算法,在对反射光谱进行各种形式预处理的基础上对柑橘叶片磷含量进行建模和磷含量预测.模型分别在校正集和测试集上进行评估,取得最佳模型决定系数分别为0.905和0.881,均方误差分别为0.005和0.004,平均相对误差分别为0.026 4和0.031 2.实验结果表明:基于高光谱反射数据进行磷含量预测是可行的.  相似文献   

2.
基于高光谱图像的龙眼叶片叶绿素含量分布模型   总被引:2,自引:0,他引:2  
针对传统高光谱单点法检测叶绿素含量效率低、精度不足等问题,提出一种基于高光谱图像和卷积神经网络(CNN)多特征融合的深度学习龙眼叶片叶绿素含量分布预测模型。首先进行Savitzky-Golay光谱去噪,然后通过奇异值分解(SVD)和独立成分分析(ICA)提取特征光谱,再对特征光谱图像提取灰度共生矩阵(GLCM)和CNN纹理特征,最后建立粒子群优化(PSO)支持向量回归(SVR)、深度神经网络(DNNs)分布模型。结果表明,基于特征光谱建模的PSO-SVR预测效果最佳,全期的校正集和验证集模型决定系数R2为0.822 0和0.815 2。对比多种主流模型,基于特征光谱、GLCM纹理、CNN纹理特征的ICA-DNNs模型预测精度最高,校正集和验证集R2分别为0.835 8和0.821 0。试验结果表明,高光谱图像可快速无损地对龙眼叶片叶绿素含量分布进行检测,可为龙眼树实时营养监测和病害早期防治提供理论依据。  相似文献   

3.
基于流形学习算法的柑橘叶片氮含量光谱估测模型   总被引:3,自引:0,他引:3  
提出了一种基于流形学习算法的柑橘叶片氮含量光谱快速检测方法。分别在萌芽期、稳果期、壮果促梢期和采果期,使用ASD Field Spec 3光谱仪采集了柑橘叶片的反射光谱,并同步采用凯式定氮法测定叶片的氮含量。首先采用正交试验确定各个生长期小波去噪的最佳参数组合,然后分别采用主成分分析、多维尺度变换、局部线性嵌入、等距映射和拉普拉斯特征映射5种流形学习算法对原始光谱和经小波去噪后的光谱数据进行特征提取,将特征数据导入支持向量机回归建立柑橘叶片氮含量预测模型,4个生长期的最佳验证集模型决定系数依次为0.901 4、0.934 4、0.895 4和0.877 9。试验结果表明,这5种流形学习算法都能有效地用于柑橘叶片氮含量预测,为柑橘叶片氮含量快速无损检测、生长态势监测和变量施肥提供了理论依据。  相似文献   

4.
基于SVR算法的苹果叶片叶绿素含量高光谱反演   总被引:3,自引:0,他引:3  
刘京  常庆瑞  刘淼  殷紫  马文君 《农业机械学报》2016,47(8):260-265,272
为实现苹果叶片叶绿素含量的高光谱反演,分析了多种光谱参数与实测SPAD值的相关性,并将归一化光谱参数值及SPAD值进行多项式回归及支持向量回归。其中以归一化植被指数为变量的SVR(Support vector regression)反演模型在建模及模型检验中决定系数分别为0.741 0、0.891 4,均方根误差分别为0.133 2、0.125 6,具有较高的精度及良好的预测能力。与多项式回归相比,SVR具有更好的反演效果,可以作为叶绿素高光谱反演的优选算法。  相似文献   

5.
为实现对柑橘叶片病虫药害种类的快速精准识别,针对多种类柑橘病叶设计一种融合注意力机制(Attention mechanism)的双向门控循环单元-循环神经网络(Attention-bidirectional gate recurrent unit-recurrent nural network, Att-BiGRU-RNN)分类模型。该模型在编解码模块分别采用BiGRU和RNN结构,能够利用高光谱数据前后波段光谱信息的关联性,有效提取光谱信息的深层特征;根据不同波段光谱信息的差异性引入注意力机制动态分配权重信息,提高重要光谱特征对分类模型的贡献率,提升模型的分类准确率。获取6类柑橘叶片高光谱信息,构建实验样本集,利用Att-BiGRU-RNN、VGG16、SVM和XGBoost分别建立柑橘病叶分类模型,Att-BiGRU-RNN模型总体分类准确率(Overall accuracy, OA)平均可达98.21%,相较于其他3种模型分别提高4.71、10.95、3.89个百分点,对光谱曲线重合度高的除草剂危害和煤烟病叶片的分类准确率有显著提升。实验结果表明,深度学习方法可有效利用高光谱不同...  相似文献   

6.
基于高光谱成像的柑橘黄龙病无损检测   总被引:4,自引:0,他引:4  
采用高光谱成像技术,结合最小二乘支持向量机(LS-SVM)和偏最小二乘判别分析(PLS-DA)2种方法,探索柑橘黄龙病快速无损检测的可行性。在380~1 080 nm光谱范围内,采集正常、轻度黄龙病、中度黄龙病、重度黄龙病和缺素5种柑橘叶片的高光谱图像。采用方差分析方法,分析了正常、轻度黄龙病、中度黄龙病、重度黄龙病和缺素5种叶片的叶绿素、淀粉和可溶性糖含量间的差异,表明3指标可作为判别黄龙病的指示性指标。采用偏最小二乘法,建立了叶绿素、可溶性糖及淀粉3指标含量的定量分析数学模型,模型预测均方根误差分别为7.46、5.51、5.88,提供了柑橘黄龙病高光谱成像快速检测依据。提取高光谱图像感兴趣区域的平均光谱,通过分析正常、轻度黄龙病、中度黄龙病、重度黄龙病和缺素5种叶片的代表性光谱,在750 nm处吸光度存在差异。采用2阶导数处理样品光谱,消除了450~650 nm和800~1 000 nm波段的基线漂移,放大了有效光谱信息。采用主成分分析(PCA)和连续投影算法(SPA)筛选柑橘黄龙病LS-SVM定性判别模型的输入变量,建立了LS-SVM定性判别模型,同时与PLS-DA进行对比。采用未参与建模的预测集样品评价模型性能,结果表明PLS-DA模型判别柑橘黄龙病的准确率更高,模型误判率为5.6%。实验结果表明,高光谱成像技术结合偏最小二乘判别分析方法可实现柑橘黄龙病快速无损检测与黄龙病病情等级判别。  相似文献   

7.
为了实现无损检测生菜叶片中重金属镉的含量,以高光谱技术为研究手段,研究一种基于高光谱技术的精确、快速和有效检测生菜中重金属镉含量的方法。首先,使用高光谱图像采集系统获取生菜高光谱图像,并提取光谱数据,对提取出的光谱数据采用连续投影算法(SPA)和基于权重回归系数的特征选择算法进行特征提取,建立预测生菜叶片中镉含量的最小二乘支持向量回归(LSSVR)模型。结果表明:SPA-LSSVR模型性能最佳,其中预测集决定系数为0.927 3,均方根误差为0.093 mg/kg。因此,利用高光谱技术结合SPA-LSSVR模型对生菜叶片中重金属镉含量进行预测是可行的,可为实际应用提供技术支持和参考。   相似文献   

8.
定量测定小麦叶片叶绿素含量在小麦估产、农情监测等方面具有重要意义.本研究验证高光谱成像技术结合偏最小二乘-最小二乘支持向量机(PLS-LS-SVM)建模方法预测大田冬小麦叶绿素含量的可行性.首先利用所搭建高光谱成像系统以线扫描方式获取大田冬小麦叶片反射光谱,进而得到其立方体图像数据,并在小麦叶片光谱图像上选择感兴趣区域计算出光谱平均反射率值.为保证PLS-LS-SVM模型的鲁棒性和预测稳定性,首先通过PLS方法解决多重共线性问题并将输入变量维数减至4维,然后利用LS-SVM进行训练建模.所建叶绿素含量预测模型的决定系数达R2=0.8459,预测均方根误差RMSEV=0.4370.研究结果表明,基于高光谱成像系统,采用PLS-LS-SVM建立模型用来预测大田冬小麦叶绿素含量是完全可行的.  相似文献   

9.
基于无人机高光谱影像的水稻叶片磷素含量估算   总被引:1,自引:0,他引:1  
为快速获取水稻叶片磷素含量信息,采用无人机搭载高光谱成像仪获取水稻冠层高光谱影像,并采样检测叶片磷素含量(质量分数)(Leaf phosphorus content, LPC).分析了水稻LPC在无人机高光谱影像上的光谱特征,使用连续投影算法提取对磷素敏感的特征波长,通过任意波段组合构建并筛选与磷素高度相关的光谱指数,...  相似文献   

10.
基于FOD和SVMDA-RF的土壤有机质含量高光谱预测   总被引:3,自引:0,他引:3  
为探讨分数阶微分(FOD)联合支持向量机分类-随机森林模型改善高光谱监测荒漠土壤有机质含量(SOM)的效果,对以色列Sde Boker荒漠地区采集的砂质土(SS)和黏壤土(CLS)样品进行理化分析和室内光谱测定,依据光谱的平均反射率建立支持向量机分类模型(SVMAD),并对不同土质高光谱原始反射率分别经0~2阶(间隔0. 2)的分数阶微分处理,构建归一化光谱指数(NDI),分析NDI和SOM之间的二维相关性,并筛选敏感的NDI指数,以此建立不同FOD的随机森林(RF)模型,并以不同土质中的最佳模型进行组合,构建新的SVMDA-RF模型。结果表明:基于光谱平均反射率的SVMDA对土壤质地的分类正确率可达100%;分数阶微分耦合光谱指数具有放大波长间与SOM有关隐含信息的能力,经FOD提升敏感指数的数量在0. 6阶时达到峰值,但黏壤土的敏感指数数量远大于沙质土;由不同FOD敏感指数建立的RF模型中,砂质土在1. 2阶的模型最佳(R_C~2=0. 962,R_P~2=0. 920,RMSEP为0. 435 g/kg,RPD为3. 658),黏壤土在0. 6阶的模型最佳(R_C~2=0. 942,R_P~2=0. 944,RMSEP为0. 554 g/kg,RPD为4. 316);经最佳模型组合后的SVMDA-RF模型,砂质土和黏壤土的模型精度都有所提高,其中R_C~2=0. 980,R_P~2=0. 979,RMSEP为0. 481 g/kg,RPD为7. 004。研究成果可为快速评估荒漠土壤有机质含量提供依据。  相似文献   

11.
王亚洲  肖志云 《农业机械学报》2024,55(1):196-202,378
针对智慧农业中叶绿素的精准预测问题,本文提出了基于双分支网络的玉米叶片叶绿素含量高光谱与多光谱协同反演的方法。使用欠完备自编码器进行数据降维,捕捉数据中最为显著的特征,使降维后的数据可以代替原始数据进行训练,从而加快训练效率,使用双分支卷积网络将多光谱数据用于填充高光谱数据信息,充分利用高光谱数据的空间细节信息,再结合1DCNN建立玉米叶片叶绿素含量预测模型。结果表明,与传统降维算法相比较,欠完备自编码器处理后预测结果最佳,决定系数R2为0.988,均方根误差(RMSE)为0.273,表明使用欠完备自编码器进行降维可以有效提高数据反演精度;与单一的高光谱数据反演模型和多光谱数据反演模型相比,双分支卷积网络预测模型均取得较优的预测结果,R2在0.932以上,RMSE均在1.765以下,表明基于双分支卷积网络的高光谱与多光谱图像协同反演模型可以有效地利用数据的特征;对于其他数据结合本文提及的双分支卷积网络模型进行反演,其R2均在0.905以上,RMSE均在2.149以下,表明该预测模型具有一定的普适性。  相似文献   

12.
基于短波近红外高光谱和深度学习的籽棉地膜分选算法   总被引:3,自引:0,他引:3  
采用膜下滴灌棉花种植模式,在机械采摘过程中地膜易混入籽棉,对后续棉花加工影响极大。地膜无色透明且无荧光效应,常规方法很难识别。为了解决地膜的分选问题,提出一种基于短波近红外高光谱和深度学习的籽棉地膜分选算法。首先,针对高光谱图像中地膜与非地膜像素点光谱特征区分不明显的问题,利用堆叠自适应加权自编码器逐层提取与输出相关的低维非线性高阶特征;然后,将此高阶特征作为分类器的输入,采用粒子群优化的极限学习机实现初步分类;最后,对分类结果进行类型合并,运用形态学方法以及连通域分析,剔除误识别区域,得到优化后的地膜分类结果。经仿真试验及现场测试,算法对地膜识别率达到95.5%,地膜选出率达95%,满足实际生产需求。  相似文献   

13.
基于高光谱成像的马铃薯叶片叶绿素分布可视化研究   总被引:3,自引:0,他引:3  
郑涛  刘宁  孙红  龙耀威  杨玮  ZHANG Qin 《农业机械学报》2017,48(S1):153-159, 340
针对马铃薯作物叶片进行了叶绿素含量无损检测技术及分布图绘制方法研究,用以指示作物长势并指导精细化管理。首先利用高光谱成像技术采集了65个马铃薯叶片的400个样本点高光谱图像和相应的SPAD值,提取并计算叶绿素测量区域的叶片平均光谱后,分别采用蒙特卡罗无信息变量消除算法(MC-UVE)和自适应重加权算法(CARS)筛选出了12个和23个叶绿素含量敏感波长,建立了马铃薯叶片叶绿素含量偏最小二乘(PLS)回归模型。建模结果如下:基于MC-UVE算法筛选的12个敏感波长的PLSR诊断模型,建模精度R2C为0.79,验证精度R2V为0.73;基于CARS算法筛选的23个敏感波长建立的PLSR诊断模型,建模精度R2C为0.82,验证精度R2V为0.80。择优选取CARS-PLSR模型计算马铃薯叶片每个像素点的叶绿素含量,从而利用伪彩色绘图绘制了马铃薯叶片叶绿素含量可视化分布图,最终实现马铃薯叶片含量无损检测以及叶绿素分布可视化表达,以期为后续马铃薯作物大田冠层叶绿素分布诊断提供支持。  相似文献   

14.
在高光谱影像作物分类中,为了充分利用高光谱遥感影像完整的光谱信息,同时避免高维数据带来的Hughes现象,本文从栈式自编码网络的数据降维与CNN网络的分类优势出发,首先分析了此种网络在训练过程中的共性,以自编码网络优化过程中分类器的选取作为切入点,构建了可用于高光谱影像分类的融合网络架构.相较于传统方法,本文方法仅通过...  相似文献   

15.
为建立单粒玉米种子水分含量的高精度检测模型,制备了80份不同水分含量的玉米种子样本。针对玉米种胚朝上和种胚朝下分别进行高光谱反射图像采集,每份样本取样100粒,波长范围为968.05~2 575.05 nm。采用PCA快速提取单粒种子光谱,经多元散射校正预处理后,分别采用随机森林(RF)和AdaBoost算法建立单粒种子水分检测模型,并集成两种算法特征提出基于加权策略的改进RF用于单粒种子水分含量建模。利用单粒玉米种子胚朝上的光谱信息建立的改进RF模型训练集相关系数R为0.969,训练集均方根误差(RMSEC)为0.094%,测试集R为0.881,测试集均方根误差(RMSEP)为0.404%;利用单粒玉米种子胚朝下的光谱信息建立的改进RF模型训练集R为0.966,RMSEC为0.100%,测试集R为0.793,RMSEP为0.544%。实验结果表明:改进RF的泛化能力和预测精度明显优于RF和AdaBoost算法;种胚朝上的单粒玉米种子水分含量检测模型优于种胚朝下的模型。高光谱检测技术结合集成学习算法建立的玉米种子水分检测模型预测精度高,稳健性好。  相似文献   

16.
玉米和大豆为同季旱粮作物,“争地”矛盾十分突出,同时掌握玉米和大豆两者的价格是必要的。相较于现货,农产品期货价格具有价格发现功能。因此,玉米和大豆期货价格分析和预测对种植结构调整和农户作物品种选择均具有重要意义。本研究首先分析了玉米和大豆期货价格的相关性,通过相关性计算和格兰杰因果检验,发现玉米和大豆期货具有较强的正向相关性,且大豆期货价格是玉米期货价格的格兰杰原因;其次,基于长短时记忆(Long Short-Term Memory,LSTM)模型对玉米和大豆期货价格进行预测,并引入注意力机制(Attention)对期货价格预测模型行优化。对比结果表明,与差分整合移动平均自回归模型(Autoregressive Integrated Moving Average Model,ARIMA)和支持向量回归模型(Support Vector Regression,SVR)相比,LSTM模型在各项指标中均为更优,而与单一的LSTM模型相比,加入Attention机制的Attention-LSTM模型在各项指标中均更优。其中,玉米和大豆期货预测结果的平均绝对误差(Mean Absolute Error,MAE)分别提升3.8%和3.3%,均方根误差(Root Mean Square Error,RMSE)分别提升0.6%和1.8%,平均绝对百分误差(Mean Absolute Percentage Error,MAPE)分别提升4.8%和2.9%,证明了Attention机制的加入可以帮助模型提取有效信息,提升性能。最后,使用LSTM模型结合大豆期货历史价格共同预测玉米期货价格,MAE提升了6.9%、RMSE提升了1.1%、MAPE提升了5.3%。试验结果表明,本研究使用Attention-LSTM模型对玉米和大豆期货价格进行预测,相较于通用预测模型,Attention-LSTM模型能够提高大豆和玉米期货价格预测精度,且结合相关农产品期货价格数据,可以提升单个农产品期货模型的预测性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号