首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于移动Agent和WSN的突发事件场景数据收集算法研究   总被引:1,自引:0,他引:1  
该文针对无线传感器网络应用于突发事件监测场景的能量消耗和网络延迟问题,提出了基于移动Agent的无线传感器网络簇式数据收集算法.动态成簇过程基于事件严重程度,并由其决定簇的生命周期和覆盖范围.Sink和簇头之间形成以Sink节点为簇头的虚拟簇.移动Agent迁移路径规划过程中下一跳节点的选取基于节点剩余能量、路径损耗及受刺激强度.移动Agent通过节点遍历的方式完成对所有簇内成员节点信息的收集.仿真结果表明,相对于C/S数据收集模型,基于移动Agent的模型具有更好的节能效果,并能一定程度地减少网络延迟,尤其适用于大规模无线传感器网络应用.  相似文献   

2.
A wireless sensor network is a network of large numbers of sensor nodes, where each sensor node is a tiny device that is equipped with a processing, sensing subsystem and a communication subsystem. The critical issue in wireless sensor networks is how to gather sensed data in an energy-efficient way, so that the network lifetime can be extended. The design of protocols for such wireless sensor networks has to be energy-aware in order to extend the lifetime of the network because it is difficult to recharge sensor node batteries. We propose a protocol to form clusters, select cluster heads, select cluster senders and determine appropriate routings in order to reduce overall energy consumption and enhance the network lifetime. Our clustering protocol is called an Efficient Cluster-Based Communication Protocol (ECOMP) for Wireless Sensor Networks. In ECOMP, each sensor node consumes a small amount of transmitting energy in order to reach the neighbour sensor node in the bidirectional ring, and the cluster heads do not need to receive any sensed data from member nodes. The simulation results show that ECOMP significantly minimises energy consumption of sensor nodes and extends the network lifetime, compared with existing clustering protocol.  相似文献   

3.

Clustering is an effective way to increase network lifetime but it leads to formation of isolated nodes in the wireless sensor network. These isolated sensor nodes forward data directly to sink and consume more energy which significantly reduces the network lifetime. In this article, we present how to maximize the network lifetime through joint routing and resource allocation with isolated nodes technique (JR-IN) between cluster head and isolated nodes in a cognitive based wireless sensor networks. In JR-IN technique the network area is divided into different layers and cluster size is formulated in each layer such that the size of the cluster remains unequal when it moves towards sink. Hence the cluster size is lager in the outermost layer compared to the cluster size in the inner most layer. To avoid inter cluster collision, we proposed different fixed channel to all the cluster heads in the network. For the intra cluster communication, the cluster member (sensor nodes) will lease the spectrum from the cluster head and forward data to their respective cluster head using TDMA technique. The periodical data gathering of cluster heads and forwarding the data to one hop cluster head may tend to lose energy faster and dies out quickly. We also propose in the JR-IN technique, the isolated nodes in the layer will take charge as a cluster head node and utilizes the resource allocated to the respective cluster head and forward the data to next hop cluster head. Simulation result shows that JR-IN outperforms the existing techniques, maximizes network lifetime and throughput and reduces the end to end delay.

  相似文献   

4.
One of important issues in wireless sensor networks is how to effectively use the limited node energy to prolong the lifetime of the networks. Clustering is a promising approach in wireless sensor networks, which can increase the network lifetime and scalability. However, in existing clustering algorithms, too heavy burden of cluster heads may lead to rapid death of the sensor nodes. The location of function nodes and the number of the neighbor nodes are also not carefully considered during clustering. In this paper, a multi-factor and distributed clustering routing protocol MFDCRP based on communication nodes is proposed by combining cluster-based routing protocol and multi-hop transmission. Communication nodes are introduced to relay the multi-hop transmission and elect cluster heads in order to ease the overload of cluster heads. The protocol optimizes the election of cluster nodes by combining various factors such as the residual energy of nodes, the distance between cluster heads and the base station, and the number of the neighbor nodes. The local optimal path construction algorithm for multi-hop transmission is also improved. Simulation results show that MFDCRP can effectively save the energy of sensor nodes, balance the network energy distribution, and greatly prolong the network lifetime, compared with the existing protocols.  相似文献   

5.
Clustering technique in wireless sensor networks incorporate proper utilization of the limited energy resources of the deployed sensor nodes with the highest residual energy that can be used to gather data and send the information. However, the problem of unbalanced energy consumption exists in a particular cluster node in the network. Some more powerful nodes act as cluster head to control sensor network operation when the network is organized into heterogeneous clusters. It is important to assume that energy consumption of these cluster head nodes is balanced. Often the network is organized into clusters of equal size where cluster head nodes bear unequal loads. Instead in this paper, we proposed a new protocol low-energy adaptive unequal clustering protocol using Fuzzy c-means in wireless sensor networks (LAUCF), an unequal clustering size model for the organization of network based on Fuzzy c-means (FCM) clustering algorithm, which can lead to more uniform energy dissipation among the cluster head nodes, thus increasing network lifetime. A heuristic comparison between our proposed protocol LAUCF and other different energy-aware protocol including low energy adaptive clustering hierarchy (LEACH) has been carried out. Simulation result shows that our proposed heterogeneous clustering approach using FCM protocol is more effective in prolonging the network lifetime compared with LEACH and other protocol for long run.  相似文献   

6.
Non‐uniform energy consumption during operation of a cluster‐based routing protocol for large‐scale wireless sensor networks (WSN) is major area of concern. Unbalanced energy consumption in the wireless network results in early node death and reduces the network lifetime. This is because nodes near the sink are overloaded in terms of data traffic compared with the far away nodes resulting in node deaths. In this work, a novel residual energy–based distributed clustering and routing (REDCR) protocol has been proposed, which allows multi‐hop communication based on cuckoo‐search (CS) algorithm and low‐energy adaptive‐clustering–hierarchy (LEACH) protocol. LEACH protocol allows choice of possible cluster heads by rotation at every round of data transmission by a newly developed objective function based on residual energy of the nodes. The information about the location and energy of the nodes is forwarded to the sink node where CS algorithm is implemented to choose optimal number of cluster heads and their positions in the network. This approach helps in uniform distribution of the cluster heads throughout the network and enhances the network stability. Several case studies have been performed by varying the position of the base stations and by changing the number of nodes in the area of application. The proposed REDCR protocol shows significant improvement by an average of 15% for network throughput, 25% for network scalability, 30% for network stability, 33% for residual energy conservation, and 60% for network lifetime proving this approach to be more acceptable one in near future.  相似文献   

7.
针对传统的层次型网络存在的分簇不合理和能耗不均衡等问题,提出了一种基于能量和密度的动态非均匀分区成簇路由算法。该算法先根据节点与基站之间的距离将网络合理地进行动态的区域划分,在区域内成簇,使靠近基站的簇规模小于距离基站较远的簇,减少靠近基站的簇首负担和能量消耗;通过综合考虑节点剩余能量和节点密度等因素来优化簇的非均匀划分和簇首的选择,簇首间采取基于数据聚合的多跳传输机制。仿真结果表明,与经典路由算法LEACH相比,该算法能有效均衡节点能耗,延长网络生命周期。  相似文献   

8.
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Ant-colony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.  相似文献   

9.
Clustering is an effective technique to prolong network lifetime for energy-constrained wireless sensor networks. Due to the many-to-one traffic pattern in a multi-hop network, the nodes closer to the sink also help to relay data for those farther away from the sink, and hence they consume much more energy and tend to die faster. This paper proposes a sink-oriented layered clustering (SOLC) protocol to better balance energy consumption among nodes with different distances to the sink. In SOLC, the sensor field is divided into concentric rings, and the SOLC protocol consists of intra-ring clustering and inter-ring routing. We compute the optimal ring width and the numbers of cluster heads in different rings to balance energy consumption between intra-cluster data processing and inter-cluster data relaying. Cluster heads in a ring closer to the sink has smaller sizes than those in the rings farther away from the sink, and hence they can spend less energy for intra-cluster data processing and more energy for inter-cluster data relay. Simulation results show that the SOLC protocol can outperform several existing clustering protocols in terms of improved network lifetime.  相似文献   

10.
Overlapping is one of the topics in wireless sensor networks that is considered by researchers in the last decades. An appropriate overlapping management system can prolong network lifetime and decrease network recovery time. This paper proposes an intelligent and knowledge‐based overlapping clustering protocol for wireless sensor networks, called IKOCP. This protocol uses some of the intelligent and knowledge‐based systems to construct a robust overlapping strategy for sensor networks. The overall network is partitioned to several regions by a proposed multicriteria decision‐making controller to monitor both small‐scale and large‐scale areas. Each region is managed by a sink, where the whole network is managed by a base station. The sensor nodes are categorized by various clusters using the low‐energy adaptive clustering hierarchy (LEACH)‐improved protocol in a way that the value of p is defined by a proposed support vector machine–based mechanism. A proposed fuzzy system determines that noncluster heads associate with several clusters in order to manage overlapping conditions over the network. Cluster heads are changed into clusters in a period by a suggested utility function. Since network lifetime should be prolonged and network traffic should be alleviated, a data aggregation mechanism is proposed to transmit only crucial data packets from cluster heads to sinks. Cluster heads apply a weighted criteria matrix to perform an inner‐cluster routing for transmitting data packets to sinks. Simulation results demonstrate that the proposed protocol surpasses the existing methods in terms of the number of alive nodes, network lifetime, average time to recover, dead time of first node, and dead time of last node.  相似文献   

11.
In wireless sensor network, a large number of sensor nodes are distributed to cover a certain area. Sensor node is little in size with restricted processing power, memory, and limited battery life. Because of restricted battery power, wireless sensor network needs to broaden the system lifetime by reducing the energy consumption. A clustering‐based protocols adapt the use of energy by giving a balance to all nodes to become a cluster head. In this paper, we concentrate on a recent hierarchical routing protocols, which are depending on LEACH protocol to enhance its performance and increase the lifetime of wireless sensor network. So our enhanced protocol called Node Ranked–LEACH is proposed. Our proposed protocol improves the total network lifetime based on node rank algorithm. Node rank algorithm depends on both path cost and number of links between nodes to select the cluster head of each cluster. This enhancement reflects the real weight of specific node to success and can be represented as a cluster head. The proposed algorithm overcomes the random process selection, which leads to unexpected fail for some cluster heads in other LEACH versions, and it gives a good performance in the network lifetime and energy consumption comparing with previous version of LEACH protocols.  相似文献   

12.
李鑫滨  高梦玲  闫磊 《电信科学》2016,32(11):42-49
针对水下无线传感网络能量效率低、生命周期短的问题,提出了一种负载均衡且能量高效的水下分簇(load balanced and energy efficient underwater clustering,LBEEUC)协议。该算法在分簇过程中首先根据节点的经验负载来确定节点所在区域簇头的比例,使经验负载大的区域分布较多的簇头,分担数据转发的任务,均衡网络的能耗;其次在节点入簇时,在簇内设置中继节点,用于均衡远离簇头节点的传输能耗,并提前进行数据融合,减少数据冗余;最后在建立簇间路由时,利用Q 学习算法根据路径消耗的总能量最小的原则选择最优传输路径。仿真结果表明,本算法有效地均衡了网络的能耗,提高了能量利用效率,进而提高了网络的生存时间。  相似文献   

13.
LEACH是一种低功耗自适应按簇分层路由算法.为了降低节点能耗,在LEACH协议的基础上提出了在选举簇头时,改变阈值T(n)的大小以降低节点成为簇头的概率,从而节省网络因分簇而消耗的能量.同时又提出了一种基于节点剩余能量的二层簇头的算法,该算法能使节点减少将冗余信息传输到基站,从而达到降低节点消耗能量的目的.通过实验仿真,表明这些方法能使网络节点能量的消耗减少,达到了延长网络生命周期的目的.  相似文献   

14.

Energy efficiency is of paramount concern in underwater sensor networks. The very nature of underwater environment makes it difficult to deploy an energy efficient network that enhances network lifetime. The existing protocols of terrestrial networks cannot be implemented directly to underwater scenarios and as such new protocols have to be designed because of speed of signal propagation under water. Improving the energy efficiency in UWSNs is an active area of research and many protocols to that end have been proposed. The routing protocol that this paper proposes is Energy Efficient Layered Cluster Head Rotation (EE-LCHR) routing protocol. This protocol makes use of the multi sink architecture and creates virtual layers containing a number of sensor nodes such that the hop count from the sensor nodes in a particular layer to the surface sink is the same. Also each layer has a number of clusters with a cluster head that keeps on rotating depending on the fitness value of the sensor nodes. The proposed protocol as compared to other extant protocols like EE-DBR and DBR improves network lifetime. The presence of virtual layers and rotation of cluster heads together ensure that energy balance is better achieved in our proposed protocol which leads to an enhanced network lifetime.

  相似文献   

15.
在交通路灯监控系统中为节省网络节点能耗和降低数据传输时延,提出一种无线传感网链状路由算法(CRASMS)。该算法根据节点和监控区域的信息将监控区域分成若干个簇区域,在每一个簇区域中依次循环选择某个节点为簇头节点,通过簇头节点和传感节点的通信建立簇内星型网络,最终簇头节点接收传感节点数据,采用数据融合算法降低数据冗余,通过簇头节点间的多跳路由将数据传输到Sink节点并将用户端的指令传输到被控节点。仿真结果表明:CRASMS算法保持了PEGASIS算法在节点能耗方面和LEACH算法在传输时延方面的优点,克服了PEGASIS 算法在传输时延方面和LEACH算法在节点能耗方面的不足,将网络平均节点能耗和平均数据传输时延保持在较低水平。在一定的条件下,CRASMS算法比LEACH和PEGASIS算法更优。  相似文献   

16.
Wireless sensor network comprises billions of nodes that work collaboratively, gather data, and transmit to the sink. “Energy hole” or “hotspot” problem is a phenomenon in which nodes near to the sink die prematurely, which causes the network partition. This is because of the imbalance of the consumption of energy by the nodes in wireless sensor networks. This decreases the network's lifetime. Unequal clustering is a technique to cope up with this issue. In this paper, an algorithm, “fuzzy‐based unequal clustering algorithm,” is proposed to prolong the lifetime of the network. This protocol forms unequal clusters. This is to balance the energy consumption. Cluster head selection is done through fuzzy logic approach. Input variables are the distance to base station, residual energy, and density. Competition radius and rank are the two output fuzzy variables. Mamdani method is employed for fuzzy inference. The protocol is compared with well‐known algorithms, like low‐energy adaptive clustering hierarchy, energy‐aware unequal clustering fuzzy, multi‐objective fuzzy clustering algorithm, and fuzzy‐based unequal clustering under different network scenarios. In all the scenarios, the proposed protocol performs better. It extends the lifetime of the network as compared with its counterparts.  相似文献   

17.
Energy efficiency is a critical issue in wireless sensor networks(WSNs).In order to minimize energy consumption and balance energy dissipation throughout the whole network,a systematic energy-balanced cooperative transmission scheme in WSNs is proposed in this paper.This scheme studies energy efficiency in systematic view.For three main steps,namely nodes clustering,data aggregation and cooperative transmission,corresponding measures are put forward to save energy.These measures are well designed and tightly coupled to achieve optimal performance.A half-controlled dynamic clustering method is proposed to avoid concentrated distribution of cluster heads caused by selecting cluster heads randomly and to get high spatial correlation between cluster nodes.Based on clusters built,data aggregation,with the adoption of dynamic data compression,is performed by cluster heads to get better use of data correlation.Cooperative multiple input multiple output(CMIMO) with an energy-balanced cooperative cluster heads selection method is proposed to transmit data to sink node.System model of this scheme is also given in this paper.And simulation results show that,compared with other traditional schemes,the proposed scheme can efficiently distribute the energy dissipation evenly throughout the network and achieve higher energy efficiency,which leads to longer network lifetime span.By adopting orthogonal space time block code(STBC),the optimal number of the cooperative transmission nodes varying with the percentage of cluster heads is also concluded,which can help to improve energy efficiency by choosing the optimal number of cooperative nodes and making the most use of CMIMO.  相似文献   

18.
Clustering is an indispensable strategy that helps towards the extension of lifetime of each sensor nodes with energy stability in wireless sensor networks (WSNs). This clustering process aids in sustaining energy efficiency and extended network lifetime in sensitive and critical real-life applications that include landslide monitoring and military applications. The dynamic characteristics of WSNs and several cluster configurations introduce challenge in the process of searching an ideal network structure, a herculean challenge. In this paper, Hybrid Chameleon Search and Remora Optimization Algorithm-based Dynamic Clustering Method (HCSROA) is proposed for dynamic optimization of wireless sensor node clusters. It utilized the global searching process of Chameleon Search Algorithm for selecting potential cluster head (CH) selection with balanced trade-off between intensification and extensification. It determines an ideal dynamic network structure based on factors that include quantity of nodes in the neighborhood, distance to sink, predictable energy utilization rate, and residual energy into account during the formulation of fitness function. It specifically achieved sink node mobility through the integration of the local searching capability of Improved Remora Optimization Algorithm for determining the optimal points of deployment over which the packets can be forwarded from the CH of the cluster to the sink node. This proposed HCSROA scheme compared in contrast to standard methods is identified to greatly prolong network lifetime by 29.21% and maintain energy stability by 25.64% in contrast to baseline protocols taken for investigation.  相似文献   

19.
为了解决热区问题和单点失效问题,提出了一种新的无线传感器网络分簇算法。算法将网络划分为非均匀的栅格,每个栅格的节点分别构成一个簇,根据节点失效概率确定栅格簇首的数目,并由栅格的多个簇首协作完成该栅格节点的数据收集。算法通过调整各个栅格中可参与簇首轮换的节点数目,从长远均衡节点之间的能耗。通过建立包含多个簇首的簇,算法降低了簇成员对单个簇首的依赖性。此外,算法还采取了一些降低能耗的措施。实验结果表明,该算法能够达到较高的能耗均衡程度和数据收集可靠性,并可以延长网络的生命周期。  相似文献   

20.
Clustering provides an effective way to prolong the lifetime of wireless sensor networks.One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network.Another is the mode of inter-cluster communication.In this paper,an energy-balanced unequal clustering(EBUC)protocol is proposed and evaluated.By using the particle swarm optimization(PSO)algorithm,EBUC partitions all nodes into clusters of unequal size,in which the clusters closer to the base station have smaller size.The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided.For inter-cluster communication,EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads.Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号