首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2016,42(14):15861-15867
A visible light active photocatalyst, Ag/TiO2/MWCNT was synthesized by loading of Ag nanoparticles onto TiO2/MWCNT nanocomposite. The photocatalytic activity of Ag/TiO2/MWCNT ternary nanocomposite was evaluated for the degradation of methylene blue dye under UV and visible light irradiation. Ag/TiO2/MWCNT ternary nanocomposite exhibits (~9 times) higher photocatalytic activity than TiO2/MWCNT and (~2 times) higher than Ag/TiO2 binary nanocomposites under visible light irradiation. The enhancement in the photocatalytic activity is attributed to the synergistic effect between Ag nanoparticles and MWCNT, which enhance the charge separation efficiency by Schottky barrier formation at Ag/TiO2 interface and role of MWCNT as an electron reservoir. Effect of different scavengers on the degradation of methylene blue dye in the presence of catalyst has been investigated to find the role of photogenerated electrons and holes. Simultaneously, the Ag/TiO2/MWCNT shows excellent photocatalytic stability. This work highlights the importance of Ag/TiO2/MWCNT ternary nanocomposite as highly efficient and stable visible-light-driven photocatalyst for the degradation of organic dyes.  相似文献   

2.
《Ceramics International》2019,45(11):14167-14172
Approximately 47% of solar-terrestrial radiation is visible. It is a great achievement to produce a highly efficient visible driven photocatalyst. Here TiO2/NiS2/Cu nanocomposite was prepared as a highly active visible driven photocatalyst. TiO2/NiS2/Cu nanocomposite was prepared by microwave method. It degrades 92%, 86%, 87%, and 88% of Rhodamine B (RhB), Methyl orange (MO), Acid Black 1 (AB1), and Acid Brown 214 (AB214), respectively. Adding NiS2 and Cu to TiO2 dramatically increased the degradation efficiency from 17% for bare TiO2 to 92% for TiO2/NiS2/Cu nanocomposite under visible light. As-prepared TiO2/NiS2/Cu nanocomposite was characterized by SEM, TEM, XRD, DRS, BET, and EDX.  相似文献   

3.
《Ceramics International》2017,43(12):8648-8654
TiO2 microspheres and TiO2/carbon quantum dots (CQDs) composites with different CQDs contents were successfully synthesized via solvothermal and in situ hydrothermal method. The structure and morphology of the prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). Results showed that carbon elements were successfully doped into the TiO2 lattice (C-TiO2) and CQDs were hybrid with C-TiO2 microspheres. The X-ray photoelectron spectroscope (XPS), valence band XPS (VB-XPS) and UV–vis diffuse reflectance spectra (DRS) analyses revealed that carbon doped into TiO2 microspheres could lead to local energy levels in the band structure and generate valence band tails to absorb visible light. The photocatalytic activities of these samples were evaluated by the photodegradation of Rhodamine B (RhB) under visible light irradiation. C-TiO2/CQDs samples presented an enhanced photocatalytic performance compared with pristine TiO2, which could be attributed to the present of CQDs, acting as adsorption sites for RhB molecules and charge separation centers to impede the recombination and prolong the life time of electron and hole pairs.  相似文献   

4.
BACKGROUND: Mercury electrodeless discharge lamps (Hg‐EDLs) were used to generate UV radiation when exposed to a microwave field. EDLs were coated with doped TiO2 in the form of thin films containing transition metal ions Mn+ (M = Fe, Co, Ni, V, Cr, Mn, Zr, Ag). Photocatalytic degradation of mono‐chloroacetic acid (MCAA) to HCl, CO2, and H2O, and decomposition of Rhodamine B on the thin films were investigated in detail. RESULTS: Polycrystalline thin doped TiO2 films were prepared by dip‐coating of EDL via a sol–gel method using titanium n‐butoxide, acetylacetone, and a transition metal acetylacetonate. The films were characterized by Raman spectroscopy, UV/Vis absorption spectroscopy, X‐ray photoelectron spectroscopy (XPS), electron microprobe analysis and by atomic force microscopy (AFM). The photocatalytic activity of doped TiO2 films was monitored in the decomposition of Rhodamine B in water. Compared with the pure TiO2 film, the UV/Vis spectra of V, Zr and Ag‐doped TiO2 showed significant absorption in the visible region, and hence the photocatalytic degradation of MCAA had increased. The best apparent degradation rate constant (0.0125 min?1), which was higher than that on the pure TiO2 film by a factor of 1.7, was obtained with the Ag(3%)/TiO2 photocatalyst. The effect of doping level of vanadium acetylacetonate on the photocatalytic efficiency of the V‐doped TiO2 was determined. CONCLUSIONS: Transition metal ion‐doped TiO2 thin films showed significant absorption in the visible region. The metal doped TiO2 photocatalyst (with an appropriate amount of V, Zr and Ag) on the Hg‐EDLs increased the degradation efficiency of MCAA in a microwave field. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
The design and construction of efficient visible light responsive composite photocatalysts with intimate interfacial contacts in photocatalytic field have attracted huge interest. Herein, a double-shelled ZnIn2S4 nanosheets/TiO2 hollow composite single nanosphere (ZIS/TiO2) was first fabricated by a facile hydrothermal process, where 2D ZnIn2S4 nanosheets self-assembled on the external surface of TiO2 hollow nanosphere to form the double-shelled hollow single sphere. The morphologies, structures, optical properties of as-prepared double-shelled ZIS/TiO2 hollow nanospheres were characterized in detail. The photocatalytic activities of double-shelled ZIS/TiO2 nanospheres for the photodegradations of Tetracycline hydrochloride, Levofloxacin and Rhodamine B under visible light irradiation have been investigated. Compared to pure TiO2 and ZnIn2S4, the obtained ZIS/TiO2 samples have significantly improved photocatalytic performances. The most optimal photocatalytic activity of ZIS/TiO2-2 nanocomposite with 64 wt% ZnIn2S4 nanosheets coated is observed, and its degradation rate constant is 2.32 and 2.14 times as high as those of pure TiO2 and ZnIn2S4. The superior photocatalytic performance of ZIS/TiO2 nanocomposite can be ascribed to its unique double shell hollow structure and the synergistic effect between ZnIn2S4 and TiO2. Our result provides some guidance for designing novel morphologies of composite photocatalyst with good photocatalytic performance.  相似文献   

6.
A phase transformation of micron‐sized TiO2 powder from anatase to rutile was attempted by heat‐treatment in order to generate a new mixed crystal TiO2 with high associated photocatalytic activity. Heat‐treated micron‐sized TiO2 powders at different transition stages were characterized by X‐ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT‐IR) and transmission electron microscopy (TEM) methods. The tests of photocatalytic activity of the heat‐treated micron‐sized TiO2 powders were conducted by the photocatalytic degradation of Rhodamine B and Acid Red B under visible light irradiation. The results indicate that mixed crystal TiO2 photocatalyst heat‐treated at 400 °C for 60 min shows the highest photocatalytic activity. It can effectively decompose the Rhodamine B and Acid Red B in aqueous solution after 6 h visible light irradiation. A remarkable improvement in photocatalytic activity of TiO2 is caused by the formation of combined rutile–anatase phases and separation of photogenerated electron–hole pairs. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
《Ceramics International》2015,41(6):7471-7477
Here, novel graphene/TiO2 nanocomposite has been successfully prepared by loading flocculent-like titanate nanostructure in graphene sheets via hydrothermal method plus a subsequent annealing process. The as-obtained hybrid was characterized by X-ray diffraction, scanning electron microscopy with an energy dispersive spectroscope (EDS), Raman, and UV–vis diffuse reflectance spectra, respectively. The photoelectrochemical activities and photocatalytic degradation performance of methyl orange under the illumination of ultraviolet light were investigated, and the flocculent-like TiO2/graphene composites was found to have a superior photocatalytic activity compared to flocculent-like titanate nanostructure and commercial anatase TiO2 powder, which can be attributed to the improved light absorption and extremely efficient charge separation of the hybrid structure. The results suggest that the as-prepared flocculent-like TiO2/graphene composite is a promising photocatalyst for photoelectrochemical hydrogen production and pollution removal.  相似文献   

8.
《Ceramics International》2015,41(8):9671-9679
The present work is focused on the preparation of hybrid ZnO/TiO2/Ag2O nanocomposite for enhanced photocatalytic activity. The resultant samples are characterized by using XRD, SEM, EDX, HR-TEM, UV-DRS, BET and XPS techniques. X-ray diffraction analysis indicates the co-existence of wurtzite, anatase and cubic phases in ZnO/TiO2/Ag2O nanocomposite. The band gap energy value of the photocatalyst is 3.39 eV, which has been evidenced from UV–visible diffuse reflectance spectroscopy measurements. Photocatalytic degradation of methylene blue dye has been investigated by using UV–visible spectrophotometer. From the result, it has been concluded that ZnO/TiO2/Ag2O nanocomposite has proven to be an efficient photocatalyst under UV irradiation when compared to that of mono and binary oxide systems. Further, the possible photodegradation mechanism is proposed to support the enhancement of photocatalytic activity towards degradation of dyes.  相似文献   

9.
周进  丁玲  张婷  贺欢  李文兵  李享成  刘义 《精细化工》2020,37(4):702-709
采用高温热解法制备了石墨相氮化碳(g-C_3N_4),将其与碳量子点(CQDs)进行水热复合,得到g-C_3N_4/CQDs复合光催化剂。采用SEM、TEM、FTIR、XRD、UV-Vis/DRS、XPS、N2吸附-脱附等温线手段对制备的复合光催化剂进行了表征,以罗丹明B(Rh B)为模拟污染物,考察了g-C_3N_4/CQDs的可见光催化活性及稳定性。结果表明:与g-C_3N_4相比,g-C_3N_4/CQDs对可见光吸收强度增加,同时其吸收波长向可见光区发生红移;当CQDs含量为1.5%(以g-C_3N_4质量为基准)时,所得g-C_3N_4/CQDs光催化材料的催化活性最佳,其对Rh B的光催化降解率是54.5%,是g-C_3N_4光催化降解率的1.38倍,化学反应动力学拟合相关系数R2=0.9982。且g-C_3N_4/CQDs循环使用3次后,其催化降解率仍保持在50%以上。光催化机理研究表明,空穴(h+)、超氧阴离子自由基(·O2–)、过氧化氢分子(H2O2)和羟基自由基(·OH)都是光催化过程中的主要活性物种,四者氧化作用大小依次为:h+·O2– H2O2·OH。  相似文献   

10.
A novel CQDs/TiO2 hierarchical structure with enhanced photocatalytic properties was achieved by uniformly decorating urchin-like and yolk-shell TiO2 microspheres (UYTMs) with carbon quantum dots (CQDs) through an environmentally friendly hydrothermal process. The CQDs were firstly synthesized by the electrochemical method, and the TEM, Raman and PL characterizations strongly indicated that the as-prepared CQDs exhibited good dispersion, high crystallinity and unique up-conversion properties. The UYTMs synthesized by a NaOH-assisted hydrothermal process showed stable 3D hierarchical structure and large surface area, which was beneficial for light absorption and contacting with contamination. The good combination of CQDs and UYTMs was further successfully achieved during the hydrothermal process, and demonstrated by a series of tests. The photocatalytic experiments suggested that the CQDs/UYTMs exhibited better photocatalytic activities than the pure UYTMs and P25 under both visible and UV light irradiation. The CQDs/UYTMs combining with 6?wt% of CQDs showed the best photocatalytic efficiency, while excessive CQDs tended to inhibit the photocatalytic activity. According to the results and discussions, a possible mechanism in improving the photocatalytic efficiency of the CQDs/UYTMs is significantly proposed. The up-conversion property of CQDs can broaden the absorption spectrum of CQDs/UYTMs to the visible light. Moreover, the CQDs, as the electron reservoirs, are efficient to separate the electrons and holes, leading to an improved photocatalytic activity of CQDs/UYTMs.  相似文献   

11.
A new type of photodegradable poly(vinyl chloride)‐bismuth oxyiodide/TiO2 (PVC‐BiOI/TiO2) nanocomposite film was prepared by embedding a nano‐TiO2 photocatalyst modified by BiOI into the commercial PVC plastic. The solid‐phase photocatalytic degradation behavior of the as‐prepared film was investigated in ambient air at room temperature under UV light irradiation, with the aid of UV‐Vis spectroscopy, weight loss monitoring, scanning electron microscopy, and FT‐IR spectroscopy. Compared to the PVC‐TiO2 nanocomposite film, the PVC‐BiOI nanocomposite film and the pure PVC film, the PVC‐BiOI/TiO2 nanocomposite film exhibited a higher photocatalytic degradation activity. The optimal mass ratio of BiOI to TiO2 was found to be 0.75 %. The weight loss rate of the PVC‐BiOI/TiO2 nanocomposite film reached 30.8 % after 336 h of irradiation, which is 1.5 times higher than that of the PVC‐TiO2 nanocomposite film under identical conditions. The solid‐phase photocatalytic degradation mechanism of the nanocomposite films was briefly discussed.  相似文献   

12.
The present work demonstrates a facile route for preparing LaFeO3/rGO nanocomposites comprising of metal oxide nanoparticles and graphene. Structural, morphology, optical and photocatalytic studies of the samples were characterized using powder X-ray diffraction (XRD), FT-IR, Raman, high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscope (HRTEM), atomic force microscopy (AFM), thermogravimetry (TGA), X-ray photoelectron spectroscopy, UV–visible and photocatalytic. LaFeO3/rGO nanocomposites believed as an effective photocatalyst for the degradation of methyl orange (MO) dye under visible light irradiation. The inclusion of carbon enhances the light absorption of LaFeO3, resulting in the enhanced photocatalytic activity of the nanocomposite. The degradation of MO dye under visible light source was completely achieved using LaFeO3/rGO as a catalyst.  相似文献   

13.
Cu-doped titania photocatalyst supported on silica beads (Cu-TiO2/SiO2) were prepared under different Cu-ion concentration and under different calcination atmosphere. The properties and performance of Cu-TiO2/SiO2 were compared with undoped TiO2/SiO2 photocatalyst. The effect of Cu-doping and calcination atmosphere on photocatalytic degradation of phenol under both black light and visible light irradiation were investigated, where in both cases the degradation rate of phenol by Cu-doped catalyst prepared under reducing calcination atmosphere was found to be higher than the undoped catalyst or Cu-doped catalyst prepared under air atmosphere. This may be attributed to increase in visible light absorption and lengthening of photogenerated electron–hole pair recombination time. The photocatalytic beads were characterized by X-ray diffraction (XRD), UV-Vis absorption spectroscopy and SEM/EDAX analysis.  相似文献   

14.
TiO2 particles supported on multi-walled carbon nanotubes (MWCNTs) were prepared using a sol–gel method to investigate their photocatalytic activity under simulated solar irradiation for the degradation of methyl orange (MO) in aqueous solution. The prepared composites were analyzed using XRD, SEM, EDS and UV–vis absorption spectroscopy. The results of this study indicated that there was little difference in the shape and structure of MWCNTs/TiO2 composite and pure TiO2 particles. The composite exhibited enhanced absorption properties in the visible light range compared to pure TiO2. The degradation of MO by MWCNTs/TiO2 composite photocatalysts was investigated under irradiation with simulated solar light. The results of this study indicated that MWCNTs played a significant role in improving photocatalytic performance. Different amounts of MWCNTs had different effects on photodegradation efficiency, and the most efficient MO photodegradation was observed for a 2% MWCNT/TiO2 mass ratio. Photocatalytic reaction kinetics were described using the Langmuir–Hinshelwood (L–H) model. The photocatalyst was reused for eight cycles, and it retained over 95.2% photocatalytic degradation efficiency. Possible decomposition mechanisms were also discussed. The results of this study indicated that photocatalytic reactions with TiO2 particles supported on MWCNTs under simulated solar light irradiation are feasible and effective for degrading organic dye pollutants.  相似文献   

15.
A novel nanoscale GR–Nd/TiO2 composite photocatalyst was synthesized by the hydrothermal method. Its crystal structure, surface morphology, chemical composition and optical properties were studied using XRD, TEM, and XPS, DRS and PL spectroscopy. It was found that graphene and neodymium modification shifts the absorption edge of TiO2 to visible-light region. The results of photoluminescence (PL) emission spectra show that GR–Nd/TiO2 composites possess better charge separation capability than do Nd/TiO2 and pure TiO2. The photocatalytic activity of prepared samples was investigated by degradation of methyl orange (MO) dye under visible light irradiation. The results show that the GR–Nd/TiO2 composite can effectively photodegrade MO, showing an impressive photocatalytic activity enhancement over that of pure TiO2. The enhanced photocatalytic activity of the composite catalyst might be attributed to the large adsorptivity of dyes, extended light absorption range and efficient charge separation due to Nd doping and graphene incorporation.  相似文献   

16.
A novel visible‐light‐driven photocatalyst of Mo‐doped LiInO2 nanocomposite was successfully synthesized through a sol‐gel method. The effect of Mo‐doping concentrations on the microstructures and properties of LiInO2 was characterized by X‐ray diffraction, scanning electron microscope, X‐ray photoelectron spectroscopy, photoluminescence, and ultraviolet‐visible absorption spectra. The photocatalytic properties of the as‐prepared samples were evaluated by the photocatalytic degradation of methylene blue (MB) dye under visible‐light irradiation. The results demonstrated that the photocatalytic activity of 6% Mo‐LiInO2 reached to 98.6%, which was much higher than that of the undoped photocatalyst LiInO2 (only 46.8%). The enhanced photocatalytic activity is ascribed to Mo‐doping strategy. The holes play an important role in the process of the photodegradation of MB. The superior photocatalytic activity of the as‐prepared Mo‐LiInO2 nanocomposites suggests a potential application for organic dye degradation of wastewater remediation. This work provides a further understanding on tailoring the band structure of semiconductor photocatalyst for enhancing visible‐light absorption and promoting electron‐hole separation by Mo‐doping strategy.  相似文献   

17.
A novel Cu2O/TiO2/Bi2O3 ternary nanocomposite was prepared, in which copper oxide improves the visible light absorption of TiO2 and bismuth oxide improves electron–hole separation. The ternary composite exhibited extended absorption in the visible region, as determined by UV–Vis diffuse reflectance spectroscopy. High-resolution transmission electron microscopy images showed close contact among the individual semiconductor oxides in the ternary Cu2O/TiO2/Bi2O3 nanocomposite. Improved charge carrier separation and transport were observed in the Cu2O/TiO2/Bi2O3 ternary composite using electrochemical impedance spectroscopy and photocurrent analysis. TiO2 modified with bismuth and copper oxides showed exceptional photocatalytic activity for hydrogen production under natural solar light. With optimum bismuth and copper oxide loadings, the Cu2O/TiO2/Bi2O3 ternary nanocomposite exhibited an H2 production (3678 μmol/h) 35 times higher than that of bare TiO2 (105?μmol/h). The synergistic effect of improved visible absorption and minimal recombination was responsible for the enhanced performance of the as-synthesized ternary nanocomposite.  相似文献   

18.
《Ceramics International》2017,43(3):3118-3126
Nano-composite materials of Ag nanoparticles dispersed TiO2 nanocubes with exposed {001}/{101} crystal faces were fabricated mainly via a flexible one-step method of hydrothermal treatment with different content of Ag from 1 up to 3 mol%. Prepared photocatalysts were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV–vis absorption spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. These analysis was carried out for understanding the contribution of different content of silver for enhancing the photocatalytic activity of TiO2 nanocubes. Prepared silver nanoparticles had small particle size and grafted to the {101} crystal face of TiO2 with the role of template control agent and linking agent. The photocatalytic performance of Ag-TiO2 nanocubes were researched via Rhodamine B dye removal under visible light irradiation ( ≧420 nm). Ag-TiO2 composite materials with the content of 2 mol% Ag showed the best photocatalytic activity for degradation of Rhodamine B, which was five times more than bare TiO2 and associated with the localized surface plasmon resonance (LSPR) propelled effect. The mechanism by which silver enhanced the photocatalytic activity of TiO2 was also demonstrated.  相似文献   

19.
《Ceramics International》2016,42(5):5766-5771
In this work, TiO2–reduced graphene oxide (RGO) nanocomposites were successfully produced by an ultrasonication-assisted reduction process. The reduction of graphene oxide (GO) and the formation TiO2 crystals occurred simultaneously. The synthesized nanocomposite was characterized by SEM, EDX, Raman spectroscopy, FTIR, XRD, XPS, UV–vis spectroscopy, photoluminescence spectrometer and electrochemical impedance spectroscopy. As a result of the introduction of RGO, the light absorption of octahedral TiO2 was markedly improved. The photocatalytic results revealed that weight percent of RGO has substantial influence on degradation of Rhodamine B under visible light irradiation. The enhancement of the photocatalytic activity can be attributed to the enhancement of the visible-light irradiation harvesting and efficiently separation of the photogenerated charge carriers. Meanwhile, upon the RGO loading, the photoelectric conversion efficiency of TiO2–RGO nanocomposite modified electrode was also highly improved.  相似文献   

20.
《Ceramics International》2017,43(3):3363-3368
A novel heterojunction CoTiO3/BiOBr nanocomposite with enhanced photocatalytic performance was synthesized by a precipitation-deposition method. The samples were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectrophotometry. Moreover, the photocatalytic activities were evaluated by decomposing the dye molecule Rhodamine B under visible light irradiation. The results showed that high photocatalytic performance can be achieved on the heterojunction photocatalysts, with the 0.15CoTiO3/0.85BiOBr composite displaying the highest activity. The results of the study concluded that it was the introduction of CoTiO3 into the catalyst that mainly enhanced the activity of the photocatalyst by promoting the separation of the electron-hole group on the interface between BiOBr and CoTiO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号