首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes four-ring slot resonator-based MIMO antennas of 75 × 150 mm2 without and with CSRR structures in the sub-6-GHz range. These orthogonal-fed antennas have shown diverse characteristics with dual polarization. L-shaped parasitic structures have increased the isolation (i.e., >40 dB) in the single-element antenna over the band of 3.4 GHz–3.8 GHz. A set of three CSRR structures in the MIMO antenna reduced the coupling between antenna ports placed in an inline arrangement and enhanced the isolation from 12 dB to 20 dB and the diversity characteristics. The S-parameters of both MIMO antennas are measured and used to evaluate MIMO parameters like ECC, TARC, MEG, and channel capacity loss. The simulation results show the variations in the gain and directivity on exciting linear and dual polarizations. The diversity performance of the reported MIMO antennas is suitable for 5G applications.  相似文献   

2.
A method to enhance the gain of microstrip dual-band multiple-input multiple-output (MIMO) antenna using partially reflective surface (PRS) layer is introduced and investigated in this paper. The proposed antenna consists of two FR4 substrates. The lower substrate has two radiating patches with parasitic elements that are supplied independently and create the MIMO property of the antenna. The upper substrate which is known as superstrate is arrays of PRS unit cells. The PRS layer printed on either side of a dielectric substrate and causes the antenna gain to increase in both frequency bands. The proposed antenna is appropriate for LTE (2.4–3.1 GHz) and WLAN (5.1–5.8 GHz) applications. The measured values of S11 and S22 parameters of the antenna are less than −10 dB and its FBR and gain are 12.5 dB and 5dBi, respectively. The average half power beam-width (HPBW) is roughly 108.  相似文献   

3.
研究了一种微带线馈电的双倒L形双频MIMO印刷天线结构,通过在倒L单极子结构上加载一条倒L形地板枝节,实现了天线的双频特性;通过在天线单元之间加载一条T形去耦枝节,有效提高了天线单元之间的隔离度。实验结果表明,天线在S11≤-10 dB时,工作频段分别为2.39~2.53 GHz和4.92~6.15 GHz,相对带宽分别为5.7%和22.2%,工作频段内隔离度均大于18 dB。此外,天线整体辐射特性较好,结构简单并易于制作,可应用于WLAN无线通信系统。  相似文献   

4.
This paper presents a four‐element wideband monopole MIMO antenna. Initially, a single‐element wideband CPW‐fed antenna is designed operating in the range of 4.30 to 6.45 GHz. Using this design, an approach towards MIMO structure is studied. A two‐element structure is designed keeping them adjacent to each other, and the isolation between the antennas is observed. After which, a four‐element structure is designed having the best orientation in order to achieve good isolation between the antenna elements. The proposed antenna configuration has four identical CPW‐fed elements. The proposed configuration has a fractional bandwidth of 40.27% and has a simulated peak gain of 5.5 dBi. This antenna is intended to be used for WLAN, WiMAX, and satellite bands of range corresponding to 4.70–6.19, 5.5–5.7, and 5–6 GHz. All the necessary antenna simulations are simulated using Ansys HFSS and verified on NI AWR Design Environment. The fabricated model of the proposed design is measured for its performance parameters and validated.  相似文献   

5.
This article presents a small, low-profile planar microstrip antenna that is applicable for both WLAN and WiMAX applications. The goal of this paper is to design an antenna which can excite triple-band operation with appreciable impedance bandwidth to combine WLAN/WiMAX communication specifications simultaneously in one device. The designed antenna has a compact size of 10 × 26 mm2. The proposed antenna consists of an inverted U-shaped slot radiator and a defected ground plane. Overall the design method and parametric study found appropriate dimensions, which provides three distinct bands I from 2.40 to 2.52, II from 3.40 to 3.60 and III from 5.00 to 6.00 GHz that covers entire WLAN (2.4/5.2/5.8 GHz) and WiMAX (2.5/3.5/5.5) bands. Finally, a prototype antenna was fabricated and experimentally characterized to verify the design concept as well as to validate the simulation results. Thus the simulation results along with the measurements show that the antenna can simultaneously operate over WLAN and WiMAX frequency bands.  相似文献   

6.
提出了一种新型共面波导馈电的小型双频宽频带天线。天线由一环形单极子和一矩形贴片组合而成,矩形贴片嵌在环形单极子内部,使得天线结构紧凑。天线分别由矩形贴片和环形单极子辐射产生高低两个工作频段,实测高低频段带宽可覆盖无线局域网络(WLAN)和微波存取全球互通(WiMAX)全部通信频段。同时,天线在各工作频段内具有良好的全向辐射特性。实测和仿真的结果基本吻合,从而验证了这种设计方法的有效性。  相似文献   

7.
In this article, a dual-port dielectric resonator antenna (DRA) is modeled using machine learning (ML) algorithms, that is, deep neural network (DNN), random forest, and XGBoost. The unique properties of the proposed article are as follows: (i) Two different diversity techniques, that is, pattern (with the help of metallic wall) and polarization (mirror image of the aperture), improve the isolation value between the ports; (ii) ML algorithms are used to optimize and predict the reflection coefficient as well as mutual coupling of the proposed antenna. The accuracy of ML algorithms is verified by using the HFSS EM simulator and experimental validation. Error is less than 1%–2% between the value predicted from ML algorithms and HFSS/experimental results. The proposed design is working well in between 2.4 and 4.02 GHz with a 3-dB axial ratio from 2.84 to 2.95 GHz. All these features make the radiator employable to the sub-6.0-GHz frequency band.  相似文献   

8.
设计了一种高隔离度双频多输入多输出(MIMO)天线,该天线覆盖2.4 GHz和5 GHz无线局域网频带,可以应用于移动物联网之中。天线包含两个相同的辐射单元天线,采用微带馈电的方式进行馈电。单元天线使用单极子天线作为基本辐射器,其包含一根长的和短的单极子天线,分别谐振在低频和高频频段。通过在两个单元天线中间加载T型隔离器提高了单元天线之间的隔离度。天线的辐射振子、馈电以及T型隔离器都印刷在同一块微波板材上,从而方便了天线的制作和加工。仿真结果表明,该天线在1.9~2.8 GHz以及4.7~6.2 GHz频带范围内能实现良好的双频工作特性,天线隔离度近20 dB,可以广泛应用于物联网系统中。  相似文献   

9.
In this paper, we propose a dual‐band multiple‐input multiple‐output (MIMO) antenna with high isolation for WLAN applications (2.45 GHz and 5.2 GHz). The proposed antenna is composed of a mobile communication terminal board, eight radiators, a coaxial feed line, and slots for isolation. The measured ?10 dB impedance bandwidths are 10.1% (2.35 GHz to 2.6 GHz) and 3.85% (5.1 GHz to 5.3 GHz) at each frequency band. The proposed four‐element MIMO antenna has an isolation of better than 35 dB at 2.45 GHz and 45 dB at 5.2 GHz between each element. The antenna gain is 3.2 dBi at 2.45 GHz and 4.2 dBi at 5.2 GHz.  相似文献   

10.
杨慧春  高攸纲  平子良  程韧 《电波科学学报》2012,27(6):1176-1179,1243
提出了一种应用于无线局域网(WLAN)的新型低成本多频段天线,采用斜切角接地的平面单极结构,天线顶部折返成水平面内的两个对称矩形单元来降低高度。同时,通过在垂直辐射单元表面开L形槽的方法,实现了无线局域网高低两个工作频段覆盖的需求。天线在各工作频段内具有良好的全向辐射特性。实测和仿真结果基本吻合,从而验证了这种设计方法的有效性。  相似文献   

11.
一种用于WLAN/WiMAX的三频MIMO天线设计   总被引:2,自引:0,他引:2  
阳松  李彦良 《电子科技》2013,26(11):96-98
介绍了一种用于WLAN(2.45 GHz,5.15~5.85 GHz)和WiMAX(3.50 GHz)3个频段的MIMO天线。该天线包含两个呈直角放置的E型单极子,使其产生3条耦合路径以获得3频特性。两个天线元间放置一个由接地面上凸起的T型隔离单元,降低了天线元间的耦合。仿真结果表明,该天线在其3个工作频段内的回波损耗<-10 dB,且在工作频带内可获得15 dB的隔离度。  相似文献   

12.
A small size neutralization line integrated flower-shaped MIMO antenna is designed and analyzed for sub-6 GHz type 5G NR frequency bands like n79 (4400–5000 MHz), n78 (3300–3800 MHz), n77 (3300–4200 MHz), and WLAN (5150–5825 MHz) applications. The novel approach of theory of characteristic mode analysis (TCMA) is introduced to provide physical insight of the designed structure and its characteristics behavior. Due to the suggested modifications in the geometry, the isolation among the patches is greatly increased. The overall miniaturized dimension of the MIMO antenna is 25 × 40 mm2. The edge-edge spacing among the elements is 0.0233λ. The prototype antenna is fabricated and measured that shows good agreement compared with simulated results. The designed MIMO antenna without the presence of decoupling structure offers an isolation of 28 dB, gain of 3.6 dBi, and radiation efficiency of 69.7% at the resonant frequency. The proposed MIMO antenna covers a broad range of frequency band from 3.296 to 5.962 GHz with −10 dB impedance bandwidth of 2666 MHz and maintains a good isolation of greater than 50 dB for the entire operating band. The tested radiation efficiency and gain are 85.3% and 6.22 dBi at 3.5 GHz. Moreover, the diversity parameters of the neutralization line integrated MIMO antenna, that is, channel capacity loss (CCL) isolation, mean effective gain (MEG), total active reflection coefficient (TARC) diversity gain (DG), and envelope correlation coefficient (ECC), are analyzed and discussed in this article.  相似文献   

13.
提出了一种适用于WLAN/WiMAX的小型化双频微带天线。在矩形辐射贴片表面加载2/5形缝隙,改变矩形辐射贴片表面电流路径,使电流有效路径增加,实现天线的双频特性。通过电磁仿真软件HFSS 15.0对天线模型进行仿真分析。结果表明,天线可同时工作于WiMAX2.60 GHz和WLAN5.15 GHz频段,低频段和高频段的相对带宽分别为4%(2.53~2.64 GHz)和6%(5.14~5.48 GHz),最大增益分别为4.47 dB和1.35 dB,能够满足WLAN和Wi MAX的通信需求。天线整体辐射性能良好、结构简单、容易集成于前端电路。  相似文献   

14.
This paper presents compact size 4 × 4 cm2 MIMO antenna for UWB applications. The proposed antenna consists of four symmetric circular elements printed on low cost FR4 substrate with partial slotted ground plane. The two sides of the substrate are symmetric and each side is consisting of two radiators with the partial ground planes associated to the two other elements mounted on the other side. The two elements of the front side are orthogonal to the two other elements of the back side in order to increase the isolation between elements. For further reduction in the mutual coupling between elements, decoupling structures are presented in the top and bottom layers of the substrate. The simulated and measured results are investigated to study the effectiveness of the MIMO-UWB antenna. The results demonstrate the satisfactory performance of MIMO-UWB antenna, which has a return loss less than −10 dB from approximately 3.1 GHz to more than 11 GHz with an insertion loss lower than −20 dB through the achieved frequency band, and a correlation less than 0.002. Moreover, the proposed MIMO model exhibits a nearly omni-directional radiation pattern with almost constant gain of average value 3.28 dBi.  相似文献   

15.
利用缝隙耦合技术和双线馈电技术设计出了一种H型缝隙耦合天线。其结构简单,制作容易,成本低廉,并具有高增益、高隔离、双极化的特性,非常适用做MIMO基站端天线。对天线进行了仿真和测试,测试结果与仿真结果吻合良好,在2.11~2.17 GHz所需频段内,实测两端口VSWR均小于1.2,实测水平极化增益为9.2 dBi、垂直极化增益为9.17 dBi、端口隔离度在频段内均低于-40 dB。分析了MIMO系统中天线阵元间的互耦作用,仿真得出基站天线阵最小阵元间距为d=0.86λ,从而为MIMO系统分析相关性提供了参考数据。  相似文献   

16.
This research suggests a compact uniplanar multiple-input multiple-output (MIMO) with four ports for n79/n46/millimeter-wave (mm-wave) applications. The size of the quad MIMO is only 30 × 30 × 0.8 mm3. MIMO system consists of four identical Z-shaped radiators and common ground on the same plane and no decoupling structures are used for isolation. The system covers the bandwidth of 1.9 GHz (4.4–6.3 GHz) with a mid-frequency of 5.6 GHz and also covers the high-band frequencies ranging from 18 to 30 GHz with a bandwidth of 12 GHz. The suggested quad MIMO is fabricated on an FR-4 board, and the measured outcomes are well in line with the simulated results. An isolation value of −11 dB has been achieved for mid-band frequency and −24 dB has been attained for mm-wave bands. Through the value of DG = 10 dB, ECC < 0.07, TARC < −3 dB, MEG < −5 dB, and the ratio of MEG = 1 dB, uniplanar quad MIMO shows acceptable MIMO diversity performance. The entire system was evaluated for the users' hand specific absorption rate (SAR) impacts and is within the limits. After the complete analysis of the miniature quad MIMO antenna, an 8-port, and a 16-port uniplanar MIMO are simulated for smartphone-sized dielectric substrates and the performances were examined. The suggested MIMO system provides an efficient single-layer MIMO antenna to 5G smartphones with high bandwidth and low SAR. The proposed quad MIMO systems are suitable for both the sub-6 GHz band and the mm-wave band.  相似文献   

17.
A compact frequency notched microstrip slot antenna for ultra-wideband (UWB) /2.4 GHz-band wireless local area network (WLAN) applications is proposed. The antenna is similar to a conventional microstrip slot antenna; however, by introducing a cross wide slot and a meandered-slotted stub, both compact size and frequency notched function can be achieved. It has been studied both numerically and experi- mentally for its impedance bandwidth, surface current distribution, radiation patterns, and gain. As will be seen, an operation bandwidth of over 4.61 ranging from 2.39 to 11.25 GHz for return loss lower than having a frequency notched band ranging from 4.75 to 5.85 GHz has been achieved, and good radiation performance over the entire frequency range has also been achieved.  相似文献   

18.
This work proposes an electrical compact triple-bands antenna founded on a composite left-/right-handed approach. This structure contains a rectangular patch combined with two unit cells based on the metamaterial properties that are used to produce wide electrical lengths in miniature physical sizes. Thus, the presented antenna is designed with a lower resonant frequency and miniature physical dimensions compared to conventional antennas. The suggested antenna has been produced on top of the FR4 substrate having tan δ = 0.022, εr = 4.58, and a size of 28 × 16 × 1.6 mm3. This structure provides three bandwidths of (2.391–2.54 GHz), (3.42–3.56 GHz), and (5.02–11.40 GHz). Additionally, a multi-input multioutput (MIMO) antenna is designed by placing two similar radiating patches in a perpendicular shape. Therefore, this design approach has been used to achieve an important isolation among ports and less than −30 dB at frequency bands. The results of radiation patterns, envelope correlation coefficient, diversity gain, and channel capacity loss are below to 0.06, 10 dB, and 0.4 b/s/Hz respectively, which confirms that the MIMO antenna is compatible with wireless MIMO devices. These antennas have been modeled and experimentally confirmed, and the results have proven that the suggested antennas are useable and can support multi-standard wireless applications.  相似文献   

19.
In this paper, a novel polarization and frequency reconfigurable microstrip patch antenna which can switch between vertical and horizontal linear polarizations, left hand and right hand circular polarizations at two WLAN frequencies is presented. The orthogonal linear polarizations are achieved by a square microstrip patch antenna fed by two ports on adjacent sides. By introducing corner truncated perturbation on opposite corners of right diagonal of a square patch, orthogonal circular polarizations are achieved. By controlling the bias voltage of two PIN diodes loaded at perturbed corners, a single structure can achieve quad polarization states. Furthermore, by superimposing a square ring slot into the corner truncated square patch and incorporating four PIN diodes into the square ring slot, quad polarization are achieved at dual frequencies. Simulated and measured results indicate that the antenna can achieve quad polarization at two WLAN bands (5.15–5.35 GHz) and (5.75–5.85 GHz). The proposed antenna is simple, has low profile and can be scaled easily for other frequencies.  相似文献   

20.
黄聪  薛锋章 《电讯技术》2011,51(11):103-106
提出了一种小型化高隔离MIMO吸顶天线设计方案.天线由水平极化印刷对数周期天线环形阵列内嵌于垂直极化单锥天线组成,并通过在单锥天线上正对对数周期天线轴处各开一个狭缝,实现了吸顶天线的全向辐射性能和双极化工作性能.嵌套结构的引入不仅大大减小了双极化吸顶天线的结构尺寸,还实现了吸顶天线极化间的高隔离性能.采用HFSS对其进...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号