首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Two series of supported Pd catalysts were synthesized on new mesoporous–macroporous supports (ZrO2, TiO2) labelled M (Zr and Ti). The deposition of palladium was carried out by wet impregnation on the calcined TiO2 and ZrO2 supports at 400 °C (Pd/Zr4, Pd/Ti4) and 600 °C (Pd/Zr6, Pd/Ti6) and followed by a calcination at 400 °C for 4 h. The pre-reduced Pd/MX catalysts were investigated for the chlorobenzene total oxidation and their catalytic properties where compared to those of a reference catalyst Pd/Ti-Ref (TiO2 from Huntsman Tioxide recalcined at 500 °C) and of a palladium supported on the fresh mesoporous–macroporous TiO2 (Pd/Ti). Based on the activity determined by T50, the Pd/Ti and Pd/Ti4 catalysts have been found to be more active than the reference one. Moreover activity decreased owing to the sequence: Pd/TiX  Pd/ZrX and in each series when the temperature of calcination of the support was raised. The overall results clearly showed that the activity was dependant on the nature of the support. The better activity of Pd/TiX compared to Pd/ZrX was likely due to a better reducibility of the TiO2 support (Ti4+ into Ti3+) leading to an enhancement of the oxygen mobility. Production of polychlorinated benzenes PhClx (x = 2–6) and of Cl2 was also observed. Nevertheless at 500 °C the selectivity in HCl was higher than 90% for the best catalysts.  相似文献   

2.
Pd/ZrO2?CTiO2 catalysts were synthesized by sol?Cgel method and studied on the steam reforming of methanol reaction for hydrogen production. X-ray diffraction patterns of the Pd supported on single oxides showed crystalline structures associated with the zirconia or titania respectively. However, the XRD pattern of the mixed ZrO2?CTiO2 oxide showed broad diffraction pattern consistent with an amorphous material. The reducibility of the PdO supported on single and mixed oxides showed a negative peak associated with the desorption of H2 due to the decomposition of Pd-hydride (PdH); as well as, positive peaks related with the hydrogen consumption on the reduction of the PdO supported. Catalytic activity on the palladium supported on the mixed ZrO2?CTiO2 oxide showed higher catalytic activity than the Pd supported on the single TiO2 or ZrO2 oxides. This finding was associated at the higher Pd species present in the Pd/ZrO2?CTiO2 than on the Pd/ZrO2 or Pd/TiO2 catalysts how was observed by TPR.  相似文献   

3.
The Pd/ZrC–C and Pd/ZrO2–C catalysts with zirconium compounds ZrC or ZrO2 and carbon hybrids as novel supports for direct formic acid fuel cell (DFAFC) have been synthesized by microwave‐assisted polyol process. The Pd/ZrC–C and Pd/ZrO2–C catalysts have been characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), energy dispersive analysis of X‐ray (EDAX), transmission electron microscopy (TEM), and electrochemical measurements. The physical characteristics present that the zirconium compounds ZrC and ZrO2 may promote the dispersion of Pd nanoparticles. The results of electrochemical tests show that the activity and stability of Pd/ZrC–C and Pd/ZrO2–C catalysts show higher than that of Pd/C catalyst for formic acid electrooxidation due to anti‐corrosion property of zirconium compounds ZrC, ZrO2, and metal–support interaction between Pd nanoparticles and ZrC, ZrO2. The Pd/ZrC–C catalyst displays the best performance among the three catalysts. The peak current density of formic acid electrooxidation on Pd/ZrC–C electrode is nearly 1.63 times of that on Pd/C. The optimal mass ratio of ZrC to XC‐72 carbon is 1:1 in Pd/ZrC–C catalyst with narrower particle size distribution and better dispersion on surface of the mixture support, which exhibits the best activity and stability for formic acid electrooxidation among all the samples.  相似文献   

4.
V-containing catalysts supported on Al2O3, modified with varying amounts of ZrO2, were prepared by impregnation method. Dehydrogenation of ethylbenzene with CO2 was run over these catalysts in a fixed-bed downflow stainless steel reactor. Compared with pure Al2O3 support, a small amount of ZrO2 in the support led to a significant increase in catalytic activity. Partial reduction of vanadium oxides and carbon deposition were the main reasons for the decreased catalytic activity.  相似文献   

5.
Pd catalysts supported on TiO2, ZrO2, ZSM-5, MCM-41 and activated carbon were used in catalytic wet oxidation of hydrocarbons such as phenol, m-cresol and m-xylene. It was found that the Pd/TiO2 catalyst was highly effective in the wet oxidation of hydrocarbon. The activities of catalysts with various hydrocarbon species, catalyst support, oxidation state of catalyst performed in a 3-phase slurry reactor show that reaction on Pd surface is more favorable than that in aqueous phase and that the active site is oxidized Pd in catalytic wet air oxidation of hydrocarbons. Based on the experimental results, a plausible reaction mechanism of wet oxidation of hydrocarbons catalyzed over Pd/TiO2 catalyst was proposed. This catalyst is superior to other oxide catalysts because it suppressed the formation of hardly-degradable organic intermediates and polymer.  相似文献   

6.
A series of catalysts, NiSO4/TiO2–ZrO2 having different TiO2–ZrO2 composition, for acid catalysis was prepared by the impregnation method using an aqueous solution of nickel sulfate. The addition of TiO2 to ZrO2 improved the surface area of the catalyst and enhanced its acidity remarkably because of the formation of new acid sites through the charge imbalance of Ti–O–Zr bonding. The binary oxide, TiO2–ZrO2 calcined above 600 °C resulted in the formation of crystalline orthorhombic phase of ZrTiO4. Therefore, NiSO4/TiO2–ZrO2 calcined at 500 °C exhibited a maximum catalytic activity for acid catalysis, and then the catalytic activity decreased with the calcination temperature. The correlation between catalytic activity and acidity held for both reaction, 2-propanol dehydration and cumene dealkylation. NiSO4 supported on 50TiO2–50ZrO2 (TiO2/ZrO2 ratio = 1) among TiO2–ZrO2 binary oxides exhibited the highest catalytic activity for acid catalysis.  相似文献   

7.
The water gas shift (WGS) reaction over Pt and Pd catalysts supported on various perovskite oxides has been investigated at 573 K without catalyst pretreatment. The Pt and Pd catalysts on LaCoO3 support showed high catalytic activity. Interaction between Pt or Pd and the support is considered to promote the WGS reaction: Pt/LaCoO3 had high initial activity but deactivated immediately; Pd/LaCoO3 was less active than Pt/LaCoO3, but had superior stability. Catalysts were characterized using XRD, STEM, XPS, and H2-temperature programmed reduction (TPR). Results of this study showed that reduction of the support decreased the CO conversion on Pt/LaCoO3. On the other hand, Pd/LaCoO3 showed stable activity for the WGS reaction. Therefore, Pd was added to Pt/LaCoO3 for stabilizing the catalyst activity, and 0.5 wt.% Pd/1 wt.% Pt/LaCoO3 catalyst showed higher activity and stability.  相似文献   

8.
The support effect on the low temperature catalytic oxidation of methane over palladium catalysts was studied by comparing a series of metal oxides as the support. Samples of 0.010 g/g Pd catalysts supported on different grades and/or phases of TiO2, Al2O3, and ZrO2 were prepared via incipient impregnation and their catalytic activity was evaluated using a laboratory plug-flow reactor. The specific surface area of the supports determined by nitrogen adsorption varied from about 13-220 m2/g. Initial experiments conducted with titania (anatase) as a support showed a low apparent activity and a poor thermal stability. Focusing on anatase, we have successfully improved its thermal stability by additions of Al2O3 or by doping with CeO2, or La2O3. However, contrary to expectations based on some information in the literature, we have found that the activity decreased in the sequence of Al2O3 > ZrO2 > TiO2, and was not a direct function of specific surface area. This was especially evident in the case of titania. The surface structure of the support and the nature of its interaction with the active component PdO seem to play a far more important role in activity than the apparent specific surface area. Moreover, anatase-supported catalysts present a very rapid deactivation, whereas rutile-supported catalysts are relatively stable. The observed phenomena could potentially be related to the interaction between support and the active phase of palladium. Several models have been proposed to describe the strong metal-support interaction, but either charge transfer or encapsulation seems to be the most probable.  相似文献   

9.
The NO reduction by ethanol over barium promoted Pd/ZrO2 catalyst and the effect of the oxygen on the selectivity were studied. The catalysts were prepared by incipient wetness impregnation with 14.3% of Ba over zirconia and 1% of palladium. The specific surface areas were 58 and 47 m2/g and the dispersions of Pd were 37% and 30% for the Pd/ZrO2 and Pd–Ba/ZrO2 catalysts, respectively. The X-ray diffraction patterns indicate the presence of monoclinic zirconia phase on the support and BaCO3, which is decomposed at 715 and 815 °C. Temperature programmed desorption profiles of NO on Pd/ZrO2 and Pd–Ba/ZrO2 catalyst showed a huge amount N2 formation for the promoted Ba catalyst. Catalytic results showed high NO conversion even at low temperature, in accordance with the TPD results and an increasing selectivity to N2 when compared with Pd/ZrO2. The effect of O2 in the NOx reduction with ethanol provoked less NO dissociation and lower selectivity to methane.  相似文献   

10.
A series of hydrotalcite‐like compounds was synthesized by varying Mg/Al molar ratio with values of 2, 3, and 4. After thermal treatment at 823 K, the corresponding mixed oxides were obtained and used as catalytic supports. The incorporation of a Pd metallic phase (0.5 g/g loading), was carried out by two methods: 1) in situ vapour phase thermal decomposition, and 2) impregnation by organic method. Fresh and calcined samples were characterized by XRD and N2 sorption experiments. The basic and metal functions were analyzed by CO2‐TPD and H2‐TPR. The Pd‐support interaction was studied by FTIR spectroscopy using CO as a probe molecule while the morphology of Pd nanoparticles on the catalysts was studied by SEM, HRTEM, and theoretical simulation using the Fast Fourier Transform (FFT) method. Finally, the catalytic activity results showed a higher conversion towards hydrocinnamaldehyde in the cinnamaldehyde hydrogenation reaction for the catalysts prepared by vapour phase thermal decomposition, compared with those prepared by organic method, showing the significant dependence on the catalytic activity and the Pd incorporation method.  相似文献   

11.
A comparison study was performed of the water-gas shift (WGS) reaction over Pt and ceria-promoted Pt catalysts supported on CeO2, ZrO2, and TiO2 under rather severe reaction conditions: 6.7 mol% CO, 6.7 mol% CO2, and 33.2 mol% H2O in H2. Several techniques—CO chemisorption, temperature-programmed reduction (TPR), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES)—were employed to characterize the catalysts. The WGS reaction rate increased with increasing amount of chemisorbed CO over Pt/ZrO2, Pt/TiO2, and Pt-CeO x /ZrO2, whereas no such correlation was found over Pt/CeO2, Pt-CeO x /CeO2, and Pt-CeO x /TiO2. For these catalysts in the absence of any impurities such as Na+, the WGS activity increased with increasing surface area of the support, showed a maximum value, and then decreased as the surface area of the support was further increased. An adverse effect of Na+ on the amount of chemisorbed CO and the WGS activity was observed over Pt/CeO2. Pt-CeO x /TiO2 (51) showed the highest WGS activity among the tested supported Pt and Pt-CeOx catalysts. The close contact between Pt and the support or between Pt and CeO x , as monitored by H2-TPR, is closely related to the WGS activity. The catalytic stability at 583K improved with increasing surface area of the support over the CeO2- and ZrO2-supported Pt and Pt-CeO x catalysts.  相似文献   

12.
Silica-supported ruthenium and palladium phosphide catalysts (Ru2P, RuP, Pd3P, Pd5P2) were investigated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). The Ru and Pd phosphide catalysts were prepared by temperature-programmed reduction of hypophosphite-based precursors consisting of uncalcined or calcined Ru/SiO2 or Pd/SiO2 impregnated with ammonium hyposphosphite (NH4H2PO2). The Ru2P/SiO2 and RuP/SiO2 catalysts prepared from uncalcined precursors had smaller average crystallite sizes, higher CO chemisorption capacities, and higher HDS activities than the catalysts prepared from the calcined precursors, while the effect of preparation method on catalytic properties was less clear for the Pd3P/SiO2 and Pd5P2/SiO2 catalysts. Following HDS testing at 673?K, X-ray diffraction analysis revealed that the Pd5P2/SiO2 catalysts decomposed to give Pd3P on the silica support, while the other phosphides exhibited good stability during the testing period. At temperatures at which high DBT conversion was observed (>598?K), the Ru and Pd phosphide catalysts were less active than sulfided Ru/SiO2 and Pd/SiO2 catalysts prepared from the uncalcined metal precursors.  相似文献   

13.
Combustion of dilute toluene and methyl ethyl ketone over Mn‐doped ZrO2 catalysts prepared using different precipitating agents, such as tetra‐alkyl ammonium hydroxides and NH4OH, having Mn/Zr ratios from 0.05 to 0.67, and calcined at different temperatures has been thoroughly investigated. The Mn‐doped ZrO2 catalyst shows high toluene or methyl ethyl ketone combustion activity, particularly when its ZrO2 is in cubic form, when its Mn/Zr ratio is close to 0.2, and when it is prepared using tetra‐methyl ammonium hydroxide as a precipitating agent and calcined at 773 K. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
The present research deals with catalyst development for the utilization of CO2 in dry reforming of methane with the aim of reaching highest yield of the main product synthesis gas (CO, H2) at lowest possible temperatures. Therefore, Ni-Pd bimetallic supported catalysts were prepared by simple impregnation method using various carriers. The catalytic performance of the catalysts was investigated at 500, 600 and 700 °C under atmospheric pressure and a CH4 to CO2 feed ratio of 1. Fresh, spent and regenerated catalysts were characterized by N2 adsorption for BET surface area determination, XRD, ICP, XPS and TEM. The catalytic activity of the studied Ni-Pd catalysts depends strongly on the support used and decreases in the following ranking: ZrO2-La2O3, La2O3 > ZrO2 > SiO2 > Al2O3 > TiO2. The bimetallic catalysts were more active than catalysts containing Ni or Pd alone. A Ni to Pd ratio = 4 at a metal loading of 7.5 wt% revealed the best results. Higher loading lead to increased formation of coke; partly in shape of carbon nanotubes (CNT) as identified by TEM. Furthermore, the effect of different calcination temperatures was studied; 600 °C was found to be most favorable. No effect on the catalytic activity was observed if a fresh catalyst was pre-reduced in H2 prior to use or spent samples were regenerated by air treatment. Ni and Pd metal species are the active components under reaction conditions. Best conversions of CO2 of 78% and CH4 of 73% were obtained using a 7.5 wt% NiPd (80:20) ZrO2-La2O3 supported catalyst at a reaction temperature of 700 °C. CO and H2 yields of 57% and 59%, respectively, were obtained.  相似文献   

15.
In this work carbon nanofiber (CNF)-coated monoliths with a very thin, homogeneous, consistent and good adhered CNF layer were obtained by means of catalytic decomposition of ethylene on Ni particles.The catalytic behaviour of Pt and Pd supported on the CNF-coated monoliths was studied in the low-temperature catalytic combustion of benzene, toluene and m-xylene (BTX) and compared with the performance of Pt and Pd supported on γ-Al2O3 coated monoliths.The catalysts supported on CNF-coated monoliths were the most active, independent of the metal catalyst or the type of the tested aromatic compound. TPD experiments showed that the γ-Al2O3 phase retained important amounts of the water molecules produced during the reaction. When water vapour was supplied to the reactant flow, the activity of Pd catalysts decreased much stronger than the Pt ones, and the activity of the Pt catalysts supported on the γ-Al2O3 was more affected than that of the catalysts supported on CNF.BTX combustion reactions seem to be catalyzed by Pt and Pd through different kinetic mechanisms, explaining why Pt catalysts always were more active than the Pd ones deposited on the same type of support. Pd catalyzed combustion of benzene is strongly inhibited by oxygen and by water.Catalysts supported on CNF-coated monoliths showed a selectivity to burn benzene better than toluene or m-xylene, attributed to a better aromatic-CNF surface interaction.  相似文献   

16.
WGS reaction has been investigated on catalysts based on platinum supported over CeO2, TiO2 and Ce-modified TiO2. XPS and XANES analyses performed on calcined catalysts revealed a close contact between Pt precursors and cerium species on CeO2 and Ce-modified TiO2 supports. TPR results corroborate the intimate contact between Pt and cerium entities in the Pt/Ce–TiO2 catalyst that facilitates the reducibility of the support at low temperatures while the Ce–O–Ti surface interactions established in the Ce-modified TiO2 support decreases the reduction of TiO2 at high temperature. The changes in the support reducibility leads to significant differences in the WGS activity of the studied catalysts. Pt supported on Ce-modified TiO2 support exhibits better activity than those corresponding to individual CeO2 and TiO2-supported catalysts. Additionally, the Ce–TiO2-supported catalyst displays better stability at reaction temperatures higher than 573 K that observed on pure TiO2-supported counterpart. Activity measurements, when coupled with the physicochemical characterization of catalysts suggest that the modifications in the surface reducibility of the support play an essential role in the enhancement of activity and stability observed when Pt is supported on the Ce-modified TiO2 substrate.  相似文献   

17.
Cobalt-containing catalysts for the high-temperature combustion of methane   总被引:1,自引:0,他引:1  
Cobalt was supported on ZrO2, La-doped ZrO2 and La2O3 through atomic layer epitaxy (ALE) and wet impregnation. The rate data obtained at 770 K is compared with literature information about cobalt inserted in other matrixes. The ALE technique using ZrO2 and La-doped ZrO2 yielded the best cobalt-containing catalysts. Bulk and surface characterization techniques provided key clues to understand the origin of the large difference in catalytic activity reported for cobalt-containing formulations.  相似文献   

18.
V2O5 supported ZrO2 and CeO2–ZrO2 catalysts were prepared and characterized by N2 physisorption, XRPD, TPR, and NH3-TPD methods. The influence of calcination temperature from 400 to 600 °C on crystallinity, acidic and redox properties were studied and compared with the catalytic activity in the selective catalytic reduction (SCR) of NO with ammonia. The surface area of the catalysts decreased gradually with increasing calcination temperature. The SCR activity of V2O5/ZrO2 catalysts was found to be related with the support crystallinity, whereas V2O5/CeO2–ZrO2 catalysts were also dependent on acidic and redox properties of the catalyst. The V2O5/CeO2–ZrO2 catalysts showed high activity and selectivity for reduction of NO with NH3.  相似文献   

19.
Nickel catalysts supported on various supports such as ZnO, MgO, ZrO2, TiO2, and Al2O3 were prepared by an impregnation method to investigate the effect of support on catalytic performance in hydrogen production by auto-thermal reforming of ethanol. Among the supported catalysts, the Ni/ZrO2 and Ni/TiO2 catalysts showed better catalytic performance than the other catalysts. The electronic structure of nickel species supported on ZrO2 and TiO2 was favorably modified for the reaction, and thus, the reducibility of nickel species supported on ZrO2 and TiO2 was increased due to the weak interaction between nickel and support. On the other hand, the Ni/MgO and Ni/ZnO catalysts exhibited poor catalytic performance in the auto-thermal reforming of ethanol due to the formation of a solid solution phase.  相似文献   

20.
The catalytic decomposition of CFC-12 (CCl2F2) in the presence of water vapor was investigated over a series of solid acids WO3/ZrO2. Compared with tungstic acid, ammonium metatungstate is a better source of tungsten oxide for the preparation of WO3/ZrO2 catalysts. CFC-12 decomposition activities of WO3/ZrO2 catalysts are in good agreement with their acidities. Enhancing the acidities of catalysts is favorable to increase their CFC-12 decomposition activities. WO3/ZrO2 catalysts calcined at higher temperature exhibit good catalytic activity and stability for the hydrolysis of CFC-12, and show better structural stability during the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号