首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A liquid crystal dimer is composed of molecules containing two mesogenic groups linked via a flexible spacer. Initial interest in these materials stemmed from their ability to act as model compounds for semi-flexible main chain liquid crystal polymers but are now of fundamental interest in their own right because their behaviour is significantly different to that of conventional low molar mass liquid crystals. Recently research has begun to focus also on higher monodisperse oligomers such as trimers and tetramers consisting of molecules containing either three or four mesogenic units, respectively, linked via flexible spacers. In this review the most recent developments in our understanding of structure–property relationships in liquid crystal dimers and higher oligomers is discussed.  相似文献   

2.
The influence of molecular weight on thermal transitions and on the thermodynamic parameters was studied for two polymers based on 4,4′-dihydroxy-α-methylstilbene with either 1,9-dibromononane (HMS-C9 polyethers) or 1,11-dibromoundecane (HMS-C11 polyethers). HMS-C9 polyethers present an enantiotropic nematic mesophase over the entire range of molecular weights and a monotropic smectic mesophase for polymers of number average molecular weights higher than 17,000. The low molecular weight HMS-C11 polyethers are only crystalline. On increasing their molecular weight, the polymers become monotropic nematics, and at higher molecular weights, enantiotropic nematics. Up to a composition containing as little as 20 mol % nonane structural units, the random copolyethers based on 1,9-dibromononane, 1,11-dibromoundecane, and 4,4′-dihydroxy-α-methylstilbene (HMS-C9/11 copolyethers) exhibit on cooling a phase diagram resembling that of HMS-C9 polyether. HMS-C9/11 containing about a 1/1 mole ratio between the two spacers presents both smectic and nematic enantiotropic mesophases. These results suggest that the phase diagram of random liquid crystalline copolymers is controlled by the shorter spacer. The thermodynamic parameters of isotropization for both polyethers and copolyethers are compared and suggest that copolymerization does not significantly decrease the degree of order of the mesogenic units in the mesomorphic phase.  相似文献   

3.
The synthesis of methacrylates and acrylates containing 4-methoxy-4′-hydroxy-α-methylstilbene and 4-hydroxy-4′-methoxy-α-methylstilbene constitutional isomers attached to the polymerizable group through flexible spacers containing 11, 8, 6, 3, and respectively 2 methylenic units is described. The radical copolymerization of a 1/2 or 2/1 mole ratio of the two constitutional isomeric monomers led to thermotropic side-chain liquid crystalline polymers in all cases. The synthesis of copolysiloxanes based on the same constitutional isomeric mesogens as side groups, and flexible spacers containing 11, 8, 6, 5, and respectively 3 methylenic units is also described. All polymers were characterized by differential scanning calorimetry and optical polarization microscopy. The polymers containing 11 methylenic units in the spacer exhibit Sc mesomorphism, while the other polymers are nematic. Copolymethacrylates do not undergo side-chain crystallization. Only the copolyacrylate containing 11 methylenic units in the spacer exhibits side-chain crystallization. All the copolysiloxanes display side-chain crystallization. The number of melting transitions seen for these polymers decreases with increasing spacer length. Copolysiloxanes containing dissimilar spacer length were also prepared. Only the copolymer synthesized with highly dissimilar spacer lengths, i.e., containing 3 and 11 methylenic units, does not undergo side-chain crystallization. These results have demonstrated that while the type of mesophase is dictated only by the spacer length, the degree of decoupling of the motion of the side-groups from the motion of the main chain is strongly dependent on the nature of the polymer backbone. For the same mesogenic unit and spacer length, the thermal stability of the mesophase is also dictated by the nature of the polymer backbone. The use of constitutional isomers of mesogenic units as side groups in liquid crystalline polymers provides at least qualitative information on the degree of decoupling of the side groups from the polymer main chain.  相似文献   

4.
The synthesis and characterization of two homologous series of tetramers in which four mesogenic units are linked via three alkyl spacers are reported. Both series contain a hexamethylene central spacer while the length of the two outer spacers, n, is varied from three to 12 methylene units. The two series differ only in the substitution pattern around the inner two mesogenic units. The series in which one mesogenic unit is attached to the central spacer in the 4-position while the other is connected at the 3-position is referred to as the n-p6m-n series, while in the n-m6m-n series both inner units are attached in the 3-position. All the members of the n-p6m-n series exhibited a nematic phase while no liquid crystallinity was observed for the n-m6m-n series. The thermal behaviour of this series is compared with that of the n-p6p-n series and also with that of the corresponding series containing a pentamethylene central spacer. The trends observed are interpreted in terms of the average molecular shapes of these tetramers.  相似文献   

5.
发现某些含二维液晶基元的热致液晶高分子容易产生反向壁织构与含有高强度向错点(|S|大于1)的向列态纹影织构。这类液晶高分子的织构与形态学特点与含一维棒状液晶基元的其他液晶高分子不同。  相似文献   

6.
Two closely related series of polyesters that contain mesogenic units interconnected by flexible spacers along the main chain were prepared and characterized for their liquid crystal properties. All of these polymers showed theotropic behavior, which was examined by DSC, hot-stage microscopy on a polarizing microscope, small-angle light and wide-angle x-ray scattering methods, and visual observation of stir-opalescence of the polymer melts. The effect of the length of the flexible spacer and the nature of the substituent, which is on the central aromatic ring of the mesogenic unit, on the stability and molecular order of the mesophase for each of the polymers was investigated and the results are discussed on the basis of the thermodynamic data obtained.  相似文献   

7.
Minli Xie 《Liquid crystals》2013,40(11):1275-1283
A series of polyethyleneimine‐based side‐chain liquid‐crystalline polymers substituted with different ratios of cyanobiphenyl as pendent mesogenic groups has been synthesized in which the spacer length varies between two and six methylene units. The structures of the synthesized polymers are confirmed by infrared and 1H nuclear magnetic resonance spectroscopy. The thermal properties of these polymers have been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. The results indicate that the thermal behaviour of the polymers is strongly dependent on the degree of substitution. Polymers containing more than 69% of mesogenic groups exhibit nematic‐type thermotropic liquid‐crystalline behaviour with schlieren textures. Below this limit, the polymers are amorphous. Polymers with a higher degree of substitution present the crystalline states. The phase transition temperatures increase and the mesomorphic temperature ranges widen with increasing degree of substitution. The clearing temperatures decrease as the spacer length increases. An odd–even effect in the clearing temperatures is observed and the odd members display the higher values.  相似文献   

8.
A new homologous series of SCLCPs containing the 4-cyanobiphenyl mesogenic group attached to the polymaleimide backbone through paraffinic spacers of two to eight methylene units have been prepared. All the polymers exhibit liquid crystalline behavior; specifically SAd- (or SC-) like and nematic phases are observed. The glass transition temperature decreases from 150 to 43°C on increasing spacer length. The isotropization temperatures exhibit an odd–even effect on varying the length and parity of the spacer, in which the odd members exhibit the higher values. This is attributed to the change in the average shape of the side chain as the parity of spacer is varied. The isotropization temperatures (>300–120°C) and the mesophase thermal stabilities (190–60°C) are high. Comparison is made with polymers containing the same mesogenic group attached to backbones of decreasing rigidity. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2531–2546, 1998  相似文献   

9.
The synthesis and characterization of polymethacrylates and polyacrylates containing 4-methoxy-4′-hydroxy-α-methylstilbene side groups attached either directly or through flexible spacers containing eleven, eight, six, three, and respectively two methylenic units, and of the polysiloxanes containing the same mesogenic group connected through flexible spacers containing eleven, eight, six, and respectively three methylenic units are described. All polymers exhibit thermotropic liquid crystallinity. The nature of the mesophase is determined by the spacer length. However, the nature of the polymer backbone determines the thermal stability of the mesophase. That is, for the same spacer length and similar polymer molecular weight, the most flexible polymer backbone leads to the highest isotropization temperature.  相似文献   

10.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene-based derivatives through intermolecular hydrogen bonding between the carboxylic acid groups of PSI100 and the imidazole rings in the azobenzene-based derivatives. The presence of H-bonding was confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline polymers and exhibit nematic mesophases identified on the basis of the observation of Schlieren textures. The mesogenic behaviour of these complexes was studied by polarizing optical microscopy and X-ray diffraction. The thermal behaviour of the complexes was investigated by differential scanning calorimetry. On increasing the spacer length, the transition temperatures initially increase. A further increase in spacer length, however, leads to a decrease in the transition temperatures. The electron donor-acceptor interaction between unlike mesogenic units in supramolecular copolymeric complexes helps to stabilize the mesophase.  相似文献   

11.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene-based derivatives through intermolecular hydrogen bonding between the carboxylic acid groups of PSI100 and the imidazole rings in the azobenzene-based derivatives. The presence of H-bonding was confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline polymers and exhibit nematic mesophases identified on the basis of the observation of Schlieren textures. The mesogenic behaviour of these complexes was studied by polarizing optical microscopy and X-ray diffraction. The thermal behaviour of the complexes was investigated by differential scanning calorimetry. On increasing the spacer length, the transition temperatures initially increase. A further increase in spacer length, however, leads to a decrease in the transition temperatures. The electron donor-acceptor interaction between unlike mesogenic units in supramolecular copolymeric complexes helps to stabilize the mesophase.  相似文献   

12.
In principle, binary mixtures of rod-like and disc-like particles should exhibit a biaxial nematic phase, but in practice phase separation into two uniaxial nematic phases prevents this. Here, we report the results of a computer simulation study of an equimolar mixture of rods and discs in which phase separation is not allowed. The particles are confined to the sites of a simple cubic lattice in which each rod is surrounded by six discs and vice versa. Neighbouring particles interact such that they prefer to align with their respective symmetry axes orthogonal to each other. In contrast, the interaction between next nearest neighbours, which are either rods or discs, is such that their symmetry axes tend to be parallel. Monte Carlo simulations of this model mixture show that an orientationally ordered phase exists at low temperatures. This nematic phase has overall uniaxial symmetry and the particles have a negative second rank orientational order parameter, indicating that they tend to align at right angles to the director. The two interpenetrating sub-lattices containing either rods or discs, however, exhibit a biaxial nematic phase. The results of the simulation are found to be in reasonable agreement with the predictions of a molecular field theory for this model mixture. We have also investigated the behaviour of this mixture when the rods and discs are allowed to exchange between their lattice sites. The mixture is found to separate into two uniaxial nematic phases composed essentially of either rods or discs, as expected.  相似文献   

13.
New polymers with chiral carbons and with rod-like mesogenic units being stringed at waist (as the “kebabs”) by the main-chain (as the “shish” or “skewer”) were synthesized and studied. All the chiral polymers are optically highly active and have strong tendency of nematic phase formation.  相似文献   

14.
Twelve symmetrical dimeric materials consisting of a nonamethylene (C9) spacer and either phenyl 4‐(4′‐alkylphenyl)benzoate, phenyl 4‐(4′‐alkylcyclohexyl)benzoate or phenyl 4‐(4′‐alkylbicyclohexyl)carboxylate mesogenic units were prepared and their mesogenic behaviour characterised by POM, DSC and XRD. All of the materials exhibited nematic phases with clearing points in excess of 200 °C. Four compounds were found to exhibit the twist‐bend nematic phase, with one material exhibiting a transition from the NTB phase into an anticlinic smectic ‘X’ phase. Across all three series of compounds the length of terminal chain is seen to dictate, to some degree, the type of mesophase formed: shorter terminal chains favour nematic and NTB mesophases, whereas longer terminal aliphatic chains were found to promote smectic phases.  相似文献   

15.
Series of dimeric compounds of different skeletal shapes consisting of two triad aromatic ester type mesogenic moieties connected via polymethylene spacers were synthesized and their liquid crystalline properties compared. The two mesogenic units are connected in either Hor T-shape or in linear fashion. In general, it was found that mesophase temperature ranges for the T- and linear-shaped compounds are much wider than for the H-shaped compounds. Moreover, the former are enantiotropic thermotropic materials, whereas the latter tend to be monotropic unless the spacer length is fairly long, i.e. longer than decamethylene. Among the three series, the linearly linked twin compounds had the highest melting and isotropization temperatures. All of the linear and T-shaped dimeric compounds reported in this article form only nematic mesophases.  相似文献   

16.
刚性链侧链型液晶高分子合成与研究   总被引:2,自引:0,他引:2  
以自由基聚合方法,合成了一系列含有3个苯环通过酯键相联的液晶性单体及其聚合物,这类刚性液晶基元不通过柔性间隔基而直接竖挂在聚丙烯酸酯大分子主链上,具有很高的Tg·DSC及偏光显微镜结果表明,所有的单体和聚合物均为向列型热致性液晶。  相似文献   

17.
《Liquid crystals》2001,28(1):59-67
Series of dimeric compounds of different skeletal shapes consisting of two triad aromatic ester type mesogenic moieties connected via polymethylene spacers were synthesized and their liquid crystalline properties compared. The two mesogenic units are connected in either Hor T-shape or in linear fashion. In general, it was found that mesophase temperature ranges for the T- and linear-shaped compounds are much wider than for the H-shaped compounds. Moreover, the former are enantiotropic thermotropic materials, whereas the latter tend to be monotropic unless the spacer length is fairly long, i.e. longer than decamethylene. Among the three series, the linearly linked twin compounds had the highest melting and isotropization temperatures. All of the linear and T-shaped dimeric compounds reported in this article form only nematic mesophases.  相似文献   

18.
Main chain discotic liquid crystalline polymers consisting of triphenylene-based units and alkyl spacers (C8, C10 and C12), connected by ester linkages in the 3- and 6-positions of triphenylene, have been synthesized and their mesomorphic properties were studied by DSC, polarizing optical microscopy and X-ray diffraction. It was found that these polymers exhibit a hexagonal columnar (Col h ) mesophase with intracolumnar order over a wide temperature range. The clearing temperature decreases on increasing the spacer length. It was found that the clearing temperatures are rather higher than that of the corresponding triphenylene monomer having six hexyloxy chains. These polymers form an ordered columnar mesophase, while the corresponding monomeric mesogen shows a disordered columnar phase. In the polymeric system, the fluctuations of the disc-like units in the mesophase are restricted by the connection of the mesogenic units, which stabilizes the columnar mesophase.  相似文献   

19.
A series of main chain photoactive liquid crystalline polyethers, containing rigid bisbenzylidene photoactive mesogen and flexible methylene spacers, were synthesized by polycondensation of bisbenzylidene diols and dibromoalkanes. The polyethers were characterized with 1H NMR, gel permeation chromatography (GPC), differential scanning calorimeter (DSC), thermo gravimetric analyzer (TGA), and polarized light optical microscopy. The individual and combined effects of spacer length and number of methoxy substituents on mesogenic and photoactive properties were investigated. Both first order and second order transition temperatures decreased with increased spacer length and the number of substituents. The combined effect of spacers and substituents drastically reduced the transition temperatures. All monomers and polymers showed mainly the smectic mesophase. In a few cases, nematic droplets along with the smectic phase were observed. The width of the liquid crystalline phase reduced with an increasing number of methoxy substituents on mesogenic unit. Variation of spacer length has a negligible effect on photocycloaddition. However, steric hinderance caused by the substituents decreased the photoactivity as the number of substituents increased. Total energies of crosslinked dimers calculated from modeling studies supported the above findings. Intermolecular photocycloaddition was also confirmed by photoviscosity measurement. The refractive index change was found to be in the range of 0.017–0.031. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2143–2155, 2009  相似文献   

20.
Optically pure malolactonate monomers containing biphenyl mesogenic groups with either an ethylene or a hexamethylene spacer were prepared from optically pure malic acid and polymerized with alkylaluminoxane catalysts to form a series of new chiral side chain liquid-crystalline polymers, which contained the chiral centres in the backbone. The mesogenic malolactonate monomers were determined to be optically pure by 1H NMR spectroscopy of the β-lactone complexed with a chiral europium shift reagent. Both the methylaluminoxane and isobutylaluminoxane catalysts gave polymers having bimodal molecular weight distributions, the latter catalyst yielded a larger amount of the higher molecular weight fraction than the former. The polymers showed high optical rotations, high degrees of isotactic stereoregularity, and enantiotropic liquid-crystalline properties, all of which were influenced by the molecular weight distribution. Copolymers of malolactonate monomers with different spacers were also prepared and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号