首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of [MCl(CO)(PPh3)2] with K[N(R2PQ)2] afforded [M{N(Ph2PQ)2}(CO)(PPh3)] (M = Ir, Rh; Q = S, Se). The IR C=O stretching frequencies for [M(CO)(PPh3){N(Ph2PQ)2}] were found to decrease in the order S > Se. Treatment of [M(COD)Cl]2 with K[N(Ph2PQ)2] afforded [M(COD){N(Ph2PQ)2}] (COD = 1,5-cyclooctadiene; M = Ir, Rh; Q = S, Se). Treatment of [Ir(ol)2Cl] with afforded (ol = cyclooctene COE, C2H4; Q = S, Se). Oxidative addition of [Ir(CO)(PPh3){N(Ph2PS)2}] and [Ir(COD){N(Ph2PS)2}] with HCl afforded [Ir(H)(Cl)(CO)(PPh3){N(Ph2PS)2}] and trans-[Ir(H)(Cl)(COD){N(Ph2PS)2}], respectively. Oxidative addition of [Ir(CO)(PPh3){N(Ph2PS)2}] with MeI afforded [Ir(Me)(I)(CO)(PPh3){N(Ph2PS)2}]. Treatment of [Ir(COE)2Cl]2 with K[N(R2PO)2] afforded [Ir(COE)2{N(Ph2PO)2}] that reacted with MeOTf (OTf = triflate) to give [Ir{N(Ph2PO)2}(COE)2(Me)(OTf)]. The crystal structures of [Ir(CO)(PPh3){N(Ph2PS)2}], [M(COD){N(Ph2PS)2}] (M = Ir, Rh), (ol = COE, C2H4), trans-[Ir(H)(Cl)(COD){N(Ph2PS)2}], and [Ir(COE)2{N(Ph2PO)2}] have been determined.  相似文献   

2.
Rh(I) and Ir(I) complexes of the type [Rh(cod)(η2-TMPP)]1+ (1) and M(cod)(η2-TMPP-O) (M = Rh (2), Ir (3); cod = cyclooctadiene; TMPP = tris(2,4,6-trimethoxyphenyl)phosphine; TMPP-O = mono-demethylated form of TMPP) have been isolated from reactions of [M(cod)Cl]2 with M′BF4 (M′ = Ag+, K+, Na+) followed by addition of the tertiary phosphine ligand. This chemistry is dependent on the identity of the metal, as both the cationic phosphine complex and the neutral phosphino-phenoxide compound are stable for Rh(I), whereas only the latter is stable for Ir(I). The three complexes have been characterized by IR and NMR (1H and 31P) spectroscopies as well as by cyclic voltammetry. The 1H NMR spectrum of [Rh(cod)(η2-TMPP)]1+ (1) is in accord with the formula and reveals that the TMPP phenyl rings are undergoing rapid exchange between coordinated and non-coordinated modes; the corresponding spectra of 2 and 3 support free rotation about the P---C bonds of the unbound phenyl rings with no fluxionality of the bound demethylated ring. The 31P{1H} NMR spectrum of the neutral species 2 exhibits a significant upfield shift with respect to the analogous cationic compound 1. This shielding is the result of improved electron donation to the metal from a phenoxide group as compared to an ether substituent. In situ addition of CO to the reaction between TMPP and [Rh(cod)Cl]2 or [Ir(cod)Cl]2 in the presence of M′BF4 results in the isolation of the monocarbonyl species [Rh(TMPP)(η2-TMPP)(CO)][BF4] (5) and the stable dicarbonyl compound [Ir(TMPP)2(CO)2][BF4] (4), respectively. Single crystal X-ray data for . The geometry of 4 is square planar, with essentially ideal angles for the mutually trans disposed phosphine and carbonyl ligands, as found in earlier studies for the analogous Rh dicarbonyl compound. The 1H NMR spectrum of 4 supports the assignment of magnetically equivalent phosphorus nuclei in solution. The results of this study indicate that cyclooctadiene is a particularly strong ligand for monovalent late transition metals ligated by TMPP, to the extent that it is inert with respect to substitution in the absence of π-acceptor ligands such as carbon monoxide.  相似文献   

3.
The synthesis of bis-cyclometalated aminocarboxylato complexes [M(α-aminocarboxylato)(ptpy)2] (M = Rh, 3, 4, 5; M = Ir, 6, 7, 8), ptpy = 2-(p-tolyl)pyridinato; aminocarboxylato = glycinato, l-alaninato, l-prolinato) from [{M(μ-Cl)(ptpy)2}2] (M = Rh, 1; M = Ir, 2) is described. The molecular structure of [Ir(l-alaninato)(ptpy)2] (7) was confirmed by a single-crystal X-ray diffraction study. Compound 7 crystallized from methanol-iso-hexane in the space group P21. For 7 the two diastereoisomers ΔIr, SC and ΛIr, SC were found crystallizing twice per unit. Absorption and emission spectra were recorded. The rhodium compounds are weak yellow-green and the iridium species strong green emitters.  相似文献   

4.
The cis effects of phosphine, arsine and stibine ligands have been evaluated by measuring the IR stretching frequency in dichloromethane of the carbonyl ligand in a series of Rh(I) Vaska-type complexes, trans-[RhCl(CO)(L)2]. These data were correlated with those obtained by Tolman for the electronic trans influences in the [Ni(L)(CO)3] complexes. The electronic contribution, χFc, of ferrocenyl was determined as 0.8 from these plots by evaluating PPh2Fc as ligand. In order to accommodate arsine and stibine ligands an additional correction term, to compensate for differences in the donor atom, was added to Tolman’s equation for calculation of the Tolman electronic parameter of phosphine ligands. In the resulting equation: ν(CONi)=2056.1+∑i=13χi+CL values for CL of CP=0, CAs=−1.5 and CSb=−3.1 are suggested for phosphine, arsine and stibine ligands, respectively. The crystal and molecular structures of trans-[RhCl(CO)(PPh2Fc)2] · 2C6H6, trans-[RhCl(CO){P(NMe2)3}2] and trans-[RhCl(CO)(AsPh3)2] are reported. The Tolman cone angles for PPh2Fc and P(NMe2)3 were determined as 169° and 166°, while the effective cone angles for PPh2Fc, P(NMe2)3 and AsPh3 were determined as 171°, 168° and 147°, respectively.  相似文献   

5.
The reactions of trans-[(PPh3)2M(CO)Cl] (M = Rh and Ir) with benzildiimine (H2BDI = 2) derived from benzil-bis(trimethylsilyl)diimine (Si2BDI) (1) in a 1:2 and 1:1 molar ratio afforded the cationic bis-benzildiiminato complexes [Rh(PPh3)2(HBDI)2]Cl (3) and the mono-benzildiimine complex [Ir(PPh3)2(CO)(H2BDI)]Cl (4), respectively. Both complexes are fully characterized using IR, FAB-MS, NMR spectroscopy and elemental analysis. The single crystal X-ray structure analysis reveals a distorted octahedral coordination geometry for the Rh(III) in 3 and a highly distorted square pyramidal geometry for Ir(I) in 4. In addition, the solid-state structure of Si2BDI is reported here for the first time showing the substituents highly twisted because of steric reasons.  相似文献   

6.
New five mono- and dinuclear Ir hydrido complexes with polydentate nitrogen ligands, [Ir(H)2(PPh3)2(tptz)]PF6 (1), [Ir2(H)4(PPh3)4(tptz)](PF6)2 · 2H2O (2 · 2H2O), [Ir(H)2(PPh3)2(tppz)]BF4 (3), [Ir2(H)4(PPh3)4(tppz)](BF4)2 (4) and [Ir2(H)4(PPh3)4(bted)](BF4)2 · 6CHCl3 (5 · 6CHCl3), were systematically prepared by the reactions of the precursor Ir hydrido complex [Ir(H)2(PPh3)2(Me2CO)2]X (X=PF6 and BF4) with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) and 1,4-bis(2,2:6,2″-terpyridine-4-yl)benzene (bted), and their structures and properties were characterized in the solid state and in solution. Each of the Ir hydrido complexes with polydentate nitrogen ligands crystallographically described a unique coordination mode. Their 1H NMR spectra demonstrated unusual 1H NMR chemical shifts of pyridyl rings that are likely induced by the ring current effect of neighboring ligands.  相似文献   

7.
The reactions of complex (C5Me5)Ir(Cl) (CO) (Me) (1a) with cyclohexylisocyanide and phosphines (L=CyNC, PHPh2, PMePh2, PMe2Ph) give the products of alkyl migratory insertion (C5Me5Ir(Cl) (COMe) (L), in toluence or tetrahydrofuran at 323 K or higher temperature. The phenyl analogue (C5Me5)Ir(Cl)(CO)(Ph) or the iodide complexes (C5Me5)Ir(I) (CO) (R) (R=Me, Ph_are not reactive under the same conditions. The reaction of (C5Me5)Ir(Cl)(CO)(Me) with PMePh2 and PMe2Ph in acetonitrile yields the chloride substitution product [(C5Me5)Ir(CO)(L)(Me)]+Cl. Kinetic measurements for the reactions of (C5Me5)Ir(Cl)(CO)(Me) in toluene are first order in the iridium complex and exhibit a saturation dependence on the incoming donors L. Analysis of the data suggests a two-step process involving (i) rapid formation of a molecular complex [(C5Me5)Ir(Cl)(CO)(Me), (L)], in which the structure of 1a is unperturbed within the limits of spectroscopic analysis, and (ii) rate determining methyl migration. The reaction parameters are K for the pre-equilibrium step (K = 1.5 (CyNC), 7.3 (PHPh2), 7.1 (PMePh2) dm3 mol−1 at 323 K) and k2 for the slow carbon---carbon bond formation (k2 (105) = 6.9 (CyNC), 1.2 (PHPh2), 1.0 (PMePh2) s−1 at 323 K). The activation parameters for the methyl migration step in the reaction with PMePh2 obtained between 308 and 338 K, are ΔH = 106±16 kJ mol−1 and ΔS = − 14±5 J K−1 mol−1. The reaction of 1a with PMePh2 proceeds at similar rates in tetrahydrofuran (K = 3.7 dm3 mol−1, k2 (105) = 1.2 s−1, 323 K). The crystal structure of (C5Me5)Ir(Cl)(COMe) (PMe2Ph) has been determined by X-ray diffraction. C20H29ClOPIr: Mr = 544.1, monoclinic, P21/n, A = 8.084 (2), B = 9.030(2), C = 28.715 (3) Å, β = 91.41 (3)°, Z = 4, Dc = 1.71 g cm−3, V = 2095.5 Å3, room temperatyre, Mo K, γ = 0.71069, μ = 65.55 cm−1, F(000) = 1044, R = 0.037 for 2453 independent observed reflections. The complex shows a deformed tetrahedral coordination assuming the η5-C5Me5 molecular fragment as a single coordination site. The iridium-chlorine bond is staggered with respect to two adjacent C(ring)-methyl bonds, while the Ir---P and the Ir---COMe bonds are eclipsed with respect to C(ring)-methyl bonds.  相似文献   

8.
Complexes TptolRh(C2H4)2 (1a) and TptolRh(CH2C(Me)C(Me)CH2) (1b) have been prepared by reaction of KTptol with the appropriate [RhCl(olefin)2]2 dimer (Tptol means hydrotris(3-p-tolylpyrazol-1-yl)borate). The two complexes show a dynamic behaviour that involves exchange between κ2 and κ3 coordination modes of the Tptol ligand. The iridium analogue, TptolIr(CH2C(Me)CHCH2) (2) has also been synthesized, and has been converted into the Ir(III) dinitrogen complex [(κ4-N,N’,N’’,C-Tptol)Ir(Ph)(N2) (3) by irradiation with UV light under a dinitrogen atmosphere. Compound 3 constitutes a rare example of Ir(III)-N2 complex structurally characterized by X-ray crystallography. Its N2 ligand can be easily substituted by acetonitrile or ethylene upon heating and denticity changes in the Tptol ligand, from κ4-N,N’,N’’,C (monometallated Tptol, from now on represented as Tptol′) to κ5-N,N′,N″,C,C″ (dimetallated Tptol ligand, represented as Tptol) have been observed. When complex 3 is heated in the presence of acetylene, dimerization of the alkyne takes place to yield the enyne complex [(κ5-N,N′,N′′,C,C′-Tptol)Ir(CH2CHCCH), 7¸ in which the unsaturated organic moiety is bonded to iridium through the carbon-carbon double bond.  相似文献   

9.
The dimerization of 6,6-dimethylfulvene with Ni(cod)2 yields the 4,4,8,8-tetramethyl-3a,4,7a,8-tetrahydro-s-indacene isomer (1a). Heating a solution of 1a converts it to the 1,4,5,8 (1b) and 1,4,7,8 (1c) tetrahydro-s-indacene isomers. The activation energy for the isomerization is 23(1) kcal/mol. 1b and 1c can be deprotonated with n-BuLi and the reaction of the dianion with [ClIr(C2H4)2]2 gives two isomers, cis-[(η5-C5H3)(CMe2)Ir(C2H4)2]2 (cis-2) and trans-[(η5-C5H3)(CMe2)Ir(C2H4)2]2 (trans-2). Reaction of 1b and 1c with RhCl3 · xH2O in refluxing methanol yields a red-orange solid, which was consistent with the empirical formula, [(C5H3)(CMe2)RhCl2]n (3). Reaction of 3 with C2H4 in a Na2CO3/ethanol mixture afforded cis-[(η5-C5H3)(CMe2)Rh(C2H4)2]2 in 5% yield.  相似文献   

10.
New water-soluble rhodium(III) complexes with a tacn (1,4,7-triazacyclononane) and a bpy (2,2-bipyridine) supporting ligands were synthesized. The reaction of [RhIII(tacn)Cl3] (1) with equimolar amount of bpy and two equivalents of AgNO3 in H2O at reflux for 10 h gave a water-soluble chloro complex [RhIII(tacn)(bpy)Cl](NO3)2 {2(NO3)2}. Complex 2(NO3)2 was treated with equimolar amount of AgNO3 in H2O at reflux for 10 h to give a water-soluble nitrato complex [RhIII(tacn)(bpy)(NO3)](NO3)2 {3(NO3)2}. Water-solubility of 3 with NO3 − ligand (46.5 mg/mL) is high compared with that of 2 with Cl ligand (14.5 mg/mL) under the same conditions (at pH 7.0 at 25 °C). The structures of 2 and 3 were unequivocally determined by X-ray analysis. Their structures in H2O were also examined by 1H NMR, IR, and electrospray ionization mass spectrometry (ESI-MS).  相似文献   

11.
[VIVO(acac)2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e.g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e.g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of l-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.  相似文献   

12.
Four novel mononuclear Rh-Cp* and Ir-Cp* complexes with polycyclic aromatic hydrocarbons (PAHs), [M(Cp*)(η6-PAHs)](BF4)2 (M = Rh and Ir; Cp* = η5-C5Me5; PAHs = phenanthrene (phn), pyrene (pyr) and triphenylene (triph)), were prepared by the reactions of the intermediate [M(Cp*)(Me2CO)3]2+ with appreciable PAHs. Their structures were characterized by a single crystal X-ray analysis, 1H, 13C {1H} NMR and 2D NMR techniques. The X-ray crystallographic studies showed that the [M(Cp*)]2+ fragment is η6-coordinated to one terminal benzene ring in each PAH. In particular, it is interesting to note that the partial π/π/π/π interaction was formed in the Ir-pyr complex [Ir(Cp*)(η6-pyr)](BF4)2. The 1D and 2D NMR studies described that the Rh-Cp* and Ir-Cp* complexes with PAHs gave unique 1H and 13C {1H} NMR spectra with positive coordination shifts (Δδ(1H, 13C)) in (CD3)2CO at 23 °C, which are likely induced by the local effect and the non-local effect on the coordination of the [M(Cp*)]2+ fragment to PAHs. The decreasing of the coupling constants (3JH-H) in the η6-coordinated benzene ring is also induced, with no changes in the uncoordinated benzene rings. The time-course of 1H NMR spectra showed that Rh-Cp* and Ir-Cp* complexes with PAHs are partially dissociated to [M(Cp*)(Me2CO)3]2+ and metal-free PAHs in (CD3)2CO at 23 °C. It was demonstrated that their stabilities are in the order of Ir-triph, Ir-phn, Ir-pyr and Rh-triph complexes in (CD3)2CO.  相似文献   

13.
The new rhodium(I) phenoxide complexes [Rh(OPh) (2,6-(CH=R2)2C5H3N)] (R2 = i-Pr(3), t-Bu(4)) containing strongly electrondonating N-N′-N ligands, have been prepared by a metathesis reaction of [RhCl(2,6-(CH=R2)2C5H3N)] (R2 = i-Pr (1), t-Bu (2)) with NaOPh. These rhodium(I) phenoxide complexes 3 and 4, which are very sensitive to O2 but stable towards H2O, give with phenol the adducts [Rh(OPh) (2,6-(CH=NR2)2C5H3N)] · HOPh (R2 = i-Pr (5), t-Bu (6)), which contain strong O-HO hydrogen bonds. The hydrogen bonded phenol could not be extracted with diethyl ether, while no exchange of the hydrogen bonded phenol and the phenoxide ligand in 4 is observed on the NMR time scale. However, a small excess of phenol results in exchange of the hydrogen bonded phenol, the coordinated phenoxide ligand and free phenol on the NMR time scale. Reaction of 3 and 4 with p-nitrophenol afforded [Rh(OC6H4-(NO2-4))(2,6-(CH=R2)2C5H3N)] · HOPh (R2 = i-Pr (7), t-Bu (8)) in which the formed phenol is hydrogen bonded to the Rh(I)-OC6H4-(NO2-4) moiety. The O-HO bond is less strong than in 5 and 6, as the hydrogen bonded phenol could be removed by diethyl ether.Treatment of 3 with acetyl chloride and benzoyl chloride in benzene at room temperature gave phenylacetate and RhCl2(C(O)C6H3) (2,6(C(H)=N-i-Pr)2C5H3N)] (15), and phenylbenzoate and [RhCl2(C(O)Ph) (2,6-(C(H)=N-i-Pr)2C5H3N)] (19), respectively. Complex 15 and the analogous complex [RhCl2(C(O)CH3) (2,6-(C(H)=N-t-Bu)2C5H3N)] (16) could also be prepared directly from acetyl chloride and 1 or 2, respectively. The single crystal X-ray determination of complex 16, monoclinic, space group P21/c, a = 10.0477(5), b= 11.7268(6), c= 19.2336(9) Å, β = 92.041(4)°, Z = 4, R1 = 0.0281, shows that the acetyl group occupies an axial position, while the N-N′-N ligand is positioned equatorially. In solution this geometry remains unchanged as was shown by variable temperature 1H NMR measurements. When the oxidative addition of acetyl chloride to 3 was carried out at −78°C in toluene the intermediate complex [RhCl(OPh) (C(O)Me) (2,6-(C(H)=N-i-Pr)2C5H3N)] (11) could be isolated, which at room temperature reductively eliminates phenylacetate with formation of 1. Oxidative addition of acetyl chlori de to 4 at room temperature gives [RhCl(OPh) (C(O)Me) (2,6-(C(H)=Nt-Bu)2C5H3N)] (12) which yields phenylacetate and 2 at 70°C in benzene by inductive elimination. Treatment of 3 with two equivalents of benzyl chloride afforded a mixture of [RhCl(OPh) (CH2Ph) (2,6-(C(H)=N-i-Pr)2C5H3N)] (13) and [RhCl2(CH2Ph) (2,6-(C(H)=N-i-Pr)2C5H3N)] (17) and some non-characterizable organic products, while 4 only yielded [RhCl(OPh) (CH2Ph) (2,6-(C(H)=N-tBu)2C5H3N)] (14).  相似文献   

14.
Rhodium and iridium complexes of trisulfonated triarylphosphanes, TPPTS (tris(3-sulfonatophenyl)phosphane), T(p-A)PTS (tris(3-sulfonato-4-methoxyphenyl)phosphane), T(2,4-X)TS (tris(2,4-dimethyl-5-sulfonatophenyl)phosphane), have been tested in biphasic hydrogenation of aldehydes. T(2,4-X)TS could not stabilize the rhodium complex under the applied conditions. Guanidium salt of T(2,4-X)TS has been characterized by X-ray crystallography, and Tolman cone angle of the phosphane has been determined from crystallographic data. The large cone angle (196°, 210°) explains the instability of the rhodium complex. Contrary to the T(2,4-X)TS/rhodium system, the T(2,4-X)TS/iridium catalyst has been found to be stable and effective in hydrogenation of benzaldehyde and caproaldehyde.  相似文献   

15.
Titanium complexes with chiral amino alcohol ligands are useful precatalysts for the intramolecular hydroamination of aminoallenes. They can be synthesized via protonolysis of titanium dimethylamide starting materials with the free ligand. In most cases, the resulting materials are not isolable due to their oily nature. However, several complexes were prepared in pure form and isolated as solid materials. [Ti(Cl)(NMe2)(-OCH2CH(Ph)N(CHMe2)-]2 was prepared at room temperature from TiCl(NMe2)3 and the corresponding N-substituted d-amino alcohol; the dimeric nature of the complex was established by X-ray crystallography. [Ti(NMe2)2(-OCH2CH(Ph)N(2-Ad)-)]2 (2-Ad = 2-Adamantyl) was prepared from Ti(NMe2)4 and the corresponding N-substituted l-amino alcohol after prolonged heating. An intermediate complex that could not be purified or isolated is believed to be Ti(NMe2)3(-OCH2CH(Ph)NH(2-Ad)). Two complexes with the composition TiCl2(-OCH2CH(R*)N(CHMe2)-)(HNMe2) (where R* = CH2Ph or CHMe2) were prepared at room temperature by protonolysis of TiCl2(NMe2)2 with the corresponding N-substituted l-amino alcohols. These two complexes exhibit dynamic behavior on the NMR timescale that is believed to be a dimer-monomer equilibrium, but they decompose at elevated temperatures.  相似文献   

16.
The new tripodal phosphine CH3C{CH2P(m-CF3C6H4)2}3, CF3PPP, was prepared by reacting CH3C(CH2Br)3 with Li+P(m-CF3C6H4)2, the latter being best obtained by adding Li+NiPr2 to PH(m-CF3C6H4)2. The rhodium complexes [RhCl(CO)(CF3PPP)], [Rh(LL)(CF3PPP)](CF3SO3) (LL = 2 CO or NBD), [RhX3(CF3PPP)], [RhX(MeCN)3(CF3PPP)](CF3SO3)2 (X = H and Cl), [RhCl2(MeCN)(CF3PPP)](CF3SO3) and [Rh(MeCN)3(CF3PPP)](CF3SO3)3 were prepared and characterized. The X-ray crystal structure of [Rh(NBD)(CF3PPP)](CF3SO3) is reported. The lower oxygen sensitivity of the CF3PPP rhodium(I) complexes, relative to the corresponding species with the parent ligand CH3C(CH2PPh2)3, is attributed to the higher effective nuclear charge on the metal centers caused by the presence of the six CF3 substituents on the terdentate phosphine. A similar effect may be responsible for the easier hydrolysis of the CF3PPP-containing, cationic rhodium(III) complexes relative to the corresponding compounds of the parent ligand.  相似文献   

17.
We report the synthesis, characterisation, and photophysical and electrochemical properties of a series of luminescent cyclometallated iridium(III) bipyridine-aldehyde complexes [Ir(N-C)2(bpy-CHO)](PF6) (HN-C=2-phenylpyridine, Hppy (1); 2-(4-methylphenyl)pyridine, Hmppy (2); 1-phenylpyrazole, Hppz (3); 3-methyl-1-phenylpyrazole, Hmppz (4); 7,8-benzoquinoline, Hbzq (5); 2-phenylquinoline, Hpq (6); bpy-CHO=4-formyl-4-methyl-2,2-bipyridine). The X-ray crystal structures of complexes 1 and 4 have been determined. On the basis of the photophysical data, the emission of these complexes is assigned to an excited state of predominantly triplet metal-to-ligand charge-transfer (3MLCT) (dπ(Ir) → (bpy-CHO)) character. For complex 6, the excited state is also mixed with substantial (3IL) () (pq) character. The protein bovine serum albumin has been labelled with these complexes to produce luminescent bioconjugates. The photophysical properties of the luminescent conjugates have also been investigated.  相似文献   

18.
The synthesis of bis-cyclometalated [Ir(ptpy)2(gly-gly-OEt)] (2, ptpy = 2-(p-tolyl)pyridinato; gly-gly-OEt = glycylglycine ethyl ester) and [Ir(ptpy)2(gly-gly-gly-OEt)] (3, gly-gly-gly-OEt = glycylglycylglycine ethyl ester) from the reaction of [{Ir(μ-Cl)(ptpy)2}2] (1) with the corresponding peptide ester hydrochlorides in the presence of NaOMe is described. The molecular structure of 2 was confirmed by a single-crystal X-ray diffraction study. The compound crystallized from dichloromethane/iso-hexane in the space group P21/a. In the crystal packing the molecules of 2 exhibit N–H?O hydrogen bonds to the neighbor molecules to form dimeric units. The absorption and emission spectra of 2 and 3 were recorded and exhibit these compounds as strong green-emitting complexes.  相似文献   

19.
Three seriesof Rh(I) complexes of the type Tp3R,5RRh(LL), with LL = 2 CO (1), norbornadiene (NBD) (2) and 1,5-cyclooctadiene (COD) (3) and the tris (pyrazolyl)borate (Tp) ligands 3R=5R=Me (a), 3R=CF35R=Me (b); and 3R=5R=CF3 (c) were synthesized and fully characterized by IR and multinuclear NMR spectroscopy. Three isomeric forms were identified in solutions of these complexes: two square-planar isomers with a κ2-Tp3R,5R ligand, the uncoordinated pyrazolyl ring occupying either an equatorial position (type A), or an axial position (type B), and a five-coordinate species with a κ3, Tp3R,5R ligand (type C). In the carbonyl complexes 1 the dynamic equilibria between these isomers are solvent dependent. Interestingly, solutions of complex 1c contained all three isomers simultaneously. 103Rh and 13C NMR spectral studies indicate that the NBD compounds, 2, preferentially form square-planar complexes when TpCF3,Me and TpCF3,CF3 are present, while for the COD complexes, 3, square-planar complexes are preferred for all three Tp-type ligands. The X-ray structure of TpCF3,MeRh(CO)2 (1b) was determined (spacce group C2/ c,a = 21.271(9), B = 11.004(3), C = 21.563(9) Å, β = 114.93(3)°, V=4577(3) Å3, Z = 8, R = 3.41, Rw = 4.70). Its structure is of type B, with the third pyrazolyl ring axially placed, the N(4) being almost directly above the Rh atom but exerting only a weak Rh-N interaction.  相似文献   

20.
The first η2-olefinic monocarbon metallacarbone closo-2-(Ph3P)-1-N,2-[μ-(η2-CH2CH=Ch2)]-1-N-(σ-CH2CH=CH2)-2,1- RhCB10H10 has been prepared by the reaction of the dimeric anion {[Ph3PRhB10H10CNH2]2-μ-H}[PPN]+ with allyl bromide and characterized by a combination of spectroscopic methods and a single-crystal X-ray diffraction study. The variable temperature 1H and 13C NMR studies revealed the fluxional behavior of the η2-olefinic complex in CD2Cl2 solution which is associated with the allyl side-chain exchange process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号