首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

2.
In this letter, we present results of photoluminescence (PL) emission from single-layer and multilayer InAs self-organized quantum dots (QDs), which were grown on (001) InP substrate. The room temperature PL peak of the single-layer QDs locates at 1608 nm, and full width at half-maximum (FWHM) of the PL peak is 71 meV. The PL peak of the multilayer QDs locates at 1478 nm, PL intensity of which is stronger than that of single-layer QDs. The single-layer QD PL spectra also display excited state emission and state filling as the excitation intensity is increased. Low temperature PL spectra show a weak peak between the peaks of QDs and wetting layer (WL), which suggests the recombination between electrons in the WL and holes in the dots.  相似文献   

3.
Self-assembled InAs quantum dots (QDs) on In0.52Al0.48As layer lattice matched to (1 0 0) InP substrates have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). TEM observations indicate that defect-free InAs QDs can be grown to obtain emissions over the technologically important 1.3–1.55 μm region. The PL peak positions for the QDs shift to low energy as the InAs coverage increases, corresponding to increase in QD size. The room temperature PL peak at 1.58 μm was observed from defect-free InAs QDs with average dot height of 3.6 nm.  相似文献   

4.
InAs quantum dots (QDs) were grown on InP substrates by low pressure-metalorganic chemical vapor deposition. Disilane (Si2H6) was used as an n-type dopant. The positions of Si doping were varied: buffer layer, capping layer, modulation doping, and QD itself. Surface treatment of InP by Si2H6 was also performed to see the effect of Si on InAs QD. Photoluminescence (PL) and atomic force microscopy (AFM) were used to characterize optical and structural properties of QDs, respectively. It was found that the PL peak positions varied from 0.73 to 0.88 eV with the position of Si doping. PL peak blue shift in modulation doped sample was explained in terms of state filling effect. It was found that Si doping at QD itself was the most effective way to obtain the strongest integrated PL intensity without degrading the QD size distribution.  相似文献   

5.
Raman spectra of InAs quantum dots (QDs) on InP substrate were investigated. Both longitudinal-optic (LO) and transverse-optic (TO) frequency of InAs QDs showed a large blue-shift comparing to its bulk due to the compressive strain in InAs QDs. Raman scattering of InAs QDs with a thin GaAs interlayer was studied. We obtained that the peak position of LO and TO mode of InAs QDs became larger blue-shifted when we inserted the GaAs layer. At the same time, we found a red-shift of the frequency of GaAs LO mode because of tensile strain. Theoretical calculation was performed and its prediction coincided with our experiment results well. They both showed that strain played an important role in formation of InAs QDs.  相似文献   

6.
The Optical characteristics of InAs quantum dots (QDs) embeded in InAlGaAs on InP have been investigated by photoluminescence (PL) spectroscopy and time-resolved PL. Four different QD samples are grown by using molecular beam epitaxy, and all the QD samples have five-stacked InAs quantum dot layers with a different InAlGaAs barrier thickness. The PL yield from InAs QDs was increased with an increase in the thickness of the InAlGaAs barrier, and the emission peak positions of all InAs QD samples were measured around 1.5 μm at room temperature. The decay time of the carrier in InAs QDs is decreased abruptly in the QD sample with the 5 nm InAlGaAs barrier. This feature is explained by the tunneling and coupling effect in the vertical direction and probably defect generation.  相似文献   

7.
Photoluminescence (PL) measurements have been carried out to investigate the annealing effects in one-period and three-periods of InAs/GaAs self-assembled quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. After annealing, the PL spectra for the annealed InAs/GaAs QDs showed dramatic blue shifts and significant linewidth narrowing of the PL peaks compared with the as-grown samples. The variations in the PL peak position and the full width at half-maximum of the PL peak are attributed to changes in the composition of the InAs QDs resulting from the interdiffusion between the InAs QDs and the GaAs barrier and to the size homogeneity of the QDs. These results indicate that the optical properties and the crystal qualities of InAs/GaAs QDs are dramatically changed by thermal treatment.  相似文献   

8.
We have investigated the temperature dependence of the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy image for uncapped sample. The power-dependent PL study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. Due to lacking of the couple between quantum dots, an unusual temperature dependence of the linewidth and peak energy of the dot ensemble photoluminescence has not been observed. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 μm at room temperature.  相似文献   

9.
The growth of InAs quantum dots (QDs) on InP (1 0 0) and (3 1 1)A substrates by chemical-beam epitaxy is studied. The InAs QDs are embedded in a GaInAsP layer lattice-matched to InP. We demonstrate an effective way to continuously tune the emission wavelength of InAs QDs grown on InP (1 0 0). With an ultra-thin GaAs layer inserted between the QD layer and the GaInAsP buffer, the peak wavelength from the InAs QDs can be continuously tuned from above 1.6 μm down to 1.5 μm at room temperature. The major role of the thin GaAs layer is to greatly suppress the As/P exchange during the deposition of InAs and subsequent growth interruption under arsenic flux, as well as to consume the segregated In layer floating on the GaInAsP buffer. Moreover, it is found that InP (3 1 1)A substrates are particularly promising for formation of uniform InAs QDs. The growth of InAs on InP (3 1 1)A consists of two stages: nanowire formation due to strain-driven growth instability and subsequent QD formation on top of the wires. The excellent size uniformity of the InAs QDs obtained on InP (3 1 1)A manifests itself in the narrow photoluminescence line width of 26 meV at 4.8 K.  相似文献   

10.
The growth parameters affecting the deposition of self-assembled InAs quantum dots (QDs) on GaAs substrate by low-pressure metal-organic chemical vapor deposition (MOCVD) are reported. The low-density InAs QDs (- 5 × 10^8cm^-2) are achieved using high growth temperature and low InAs coverage. Photoluminescence (PL) measurements show the good optical quality of low-density QDs. At room temperature, the ground state peak wavelength of PL spectrum and full-width at half-maximum (FWHM) are 1361 nm and 23 meV (35 nm), respectively, which are obtained as the GaAs capping layer grown using triethylgallium (TEG) and tertiallybutylarsine (TBA). The PL spectra exhibit three emission peaks at 1361, 1280, and 1204 nm, which correspond to the ground state, the first excited state, and the second excited state of the ODs, respectively.  相似文献   

11.
Reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and double-crystal X-ray curves showed that high-quality InAs quantum dot (QD) arrays inserted into GaAs barriers were embedded in an Al0.3Ga0.7As/GaAs heterostructure. The temperature-dependent photoluminescence (PL) spectra of the InAs/GaAs QDs showed that the exciton peak corresponding interband transition from the ground electronic subband to the ground heavy-hole subband (E1-HH1) was dominantly observed and that the peak position and the full width at half maximum corresponding to the interband transitions of the PL spectrum were dependent on the temperature. The activation energy of the electrons confined in the InAs/GaAs QDs was 115 meV. The electronic subband energy and the energy wave function of the Al0.3Ga0.7As/GaAs heterostructures were calculated by using a self-consistent method. The electronic subband energies in the InAs/GaAs QDs were calculated by using a three-dimensional spatial plane wave method, and the value of the calculated (E1-HH1) transition in the InAs/GaAs QDs was in reasonable agreement with that obtained from the PL measurement.  相似文献   

12.
Structural and optical properties of In0.5Ga0.5As/GaAs quantum dots (QDs) grown at 510 °C by atomic layer molecular beam epitaxy technique are studied as a function of n repeated deposition of 1-ML-thick InAs and 1-ML-thick GaAs. Cross-sectional images reveal that the QDs are formed by single large QDs rather than closely stacked InAs QDs and their shape is trapezoidal. In the image, existence of wetting layers is not clear. In 300 K-photoluminescence (PL) spectra of InGaAs QDs (n=5), 4 peaks are resolved. Origin of each peak transition is discussed. Finally, it was found that the PL linewidths of atomic layer epitaxy (ALE) QDs were weakly sensitive to cryostat temperatures (16–300 K). This is attributed to the nature of ALE QDs; higher uniformity and weaker wetting effect compared to SK QDs.  相似文献   

13.
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.  相似文献   

14.
张志伟  赵翠兰  孙宝权 《物理学报》2018,67(23):237802-237802
采用双层耦合量子点的分子束外延生长技术生长了InAs/GaAs量子点样品,把量子点的发光波长成功地拓展到1.3 μm.采用光刻的工艺制备了直径为3 μm的柱状微腔,提高了量子点荧光的提取效率.在低温5 K下,测量得到量子点激子的荧光寿命约为1 ns;单量子点荧光二阶关联函数为0.015,显示单量子点荧光具有非常好的单光子特性;利用迈克耳孙干涉装置测量得到单光子的相干时间为22 ps,对应的谱线半高全宽度为30 μeV,且荧光谱线的线型为非均匀展宽的高斯线型.  相似文献   

15.
The effect of thermal annealing on self-assembled uncapped InAs/GaAs quantum dots (QDs) has been investigated using transmission electron microscopy (TEM) and photoluminescence (PL) measurements. The TEM images showed that the lateral sizes and densities of the InAs QDs were not changed significantly up to 650 °C. When the InAs/GaAs QDs were annealed at 700 °C, while the lateral size of the InAs QDs increased, their density decreased. The InAs QDs disappeared at 800 °C. PL spectra showed that the peaks corresponding to the interband transitions of the InAs QDs shifted slightly toward the high-energy side, and the PL intensity decreased with increasing annealing temperature. These results indicate that the microstructural and the optical properties of self-assembled uncapped InAs/GaAs can be modified due to postgrowth thermal annealing.  相似文献   

16.
We report systematic temperature-dependent measurements of photoluminescence spectra in self-assembled InGaAs/InAs/GaAs quantum dots (QDs). We have studied the rise in temperature of the ground-state homogeneous linewidth.A theoretical model is presented and accounts for the phonon-assisted broadening of this transition in individual QD. We have estimated the homogeneous linewidth of an individual QD from PL spectra of self-organized InAs/GaAs QDs by isolating the PL of each individual QD and fitting the narrow line associated with self-organized QDs through a Lorentzian convoluted by a Gaussian. We have observed a strong exciton–LO–phonon coupling (γLO) which becomes the dominating contribution to the linewidth above the temperature of 45 K. We have also derived the activation energy (ΔE) of the exciton–LO–phonon coupling, zero temperature linewidth (Γ0) and the exciton-LA-phonon coupling parameter (γAc). We report that our values are close to the values found in the literature for single InGaAs QD and InAs QD.  相似文献   

17.
We study the mechanism of ordered growth of InAs quantum dots (islands) on a GaAs/InP substrate in theory and point out that the tensile strain can be used to control InAs/InP self-assembled quantum dots arrangement. Photoluminescence spectrum, and atomic force microscopy images have been investigated. In the experiment, ordered InAs islands have been obtained and the maximum density of quantum dots is 1.6×1010 cm−2 at 4 monolayers InAs layer.  相似文献   

18.
GaAsSb strain-reducing layers (SRLs) are applied to cover InAs quantum dots (QDs) grown on GaAs substrates. The compressive strain induced in InAs QDs is reduced due to the tensile strain induced by the GaAsSb SRL, resulting in a redshift of photoluminescence (PL) peaks of the InAs QDs. A strong PL signal around a wavelength of 1.3 μm was observed even at room temperature. A laser diode containing InAs QDs with GaAsSb SRLs in the active region was fabricated, which exhibits laser oscillation in pulsed operation at room temperature. These results indicate that GaAsSb SRLs have a high potential for fabricating high efficient InAs QDs laser diodes operating at long-wavelength regimes.  相似文献   

19.
刘宁  金鹏  王占国 《中国物理 B》2012,(11):410-413
We report the effect of the GaAs spacer layer thickness on the photoluminescence(PL) spectral bandwidth of InAs/GaAs self-assembled quantum dots(QDs).A PL spectral bandwidth of 158 nm is achieved with a five-layer stack of InAs QDs which has a 11-nm thick GaAs spacer layer.We investigate the optical and the structural properties of the multilayer-stacked InAs/GaAs QDs with different GaAs spacer layer thicknesses.The results show that the spacer thickness is a key parameter affecting the multi-stacked InAs/GaAs QDs for wide-spectrum emission.  相似文献   

20.
We have observed an unusual temperature sensitivity of the photoluminescence (PL) peak energy for InAs quantum dots grown on InAs quantum wires (QDOWs) on InP substrate. The net temperature shift of PL wavelength of the QDOWs ranges from 0.8 to −4 Å/°C depending upon the Si doping concentration in the samples. This unusual temperature behavior can be mainly ascribed to the stress amplification in the QDOWs when the thermal strain is transferred from the surrounding InAs wires. This offers an opportunity for realizing quantum dot laser devices with a temperature insensitive lasing wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号