首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a fuzzy logic prediction model for the bond strength of lightweight concrete containing mineral admixtures under different curing conditions was devised. A control concrete mixture containing only Portland cement, another mixture having fly ash replacing 15% by mass of cement, and a third mixture having silica fume replacing 10% by mass of cement are produced, and all specimens from these three mixtures are cured in three different conditions, which are: (1) in water tank of 20 ± 2 °C, (2) sealed in plastic bags in the laboratory, and (3) in air in the laboratory. At the end of each curing period, three specimens out of each concrete combination and curing condition were tested for compressive and bond strengths, and the average of three values were taken. The results obtained from the fuzzy logic prediction model were compared with the average results of the experiments, and they were found to be remarkably close to each other. The results show that the fuzzy logic can be used to predict bond strength of lightweight concrete.  相似文献   

2.
In this work, Ni oxide thin films, with thermal sensitivity superior to Pt and Ni thin films, were formed through annealing of Ni films deposited by a r.f. magnetron sputtering. The annealing was carried out in the temperature range of 300–500 °C under atmospheric conditions. Resistivity of the resulting Ni oxide films were in the range of 10.5 μΩ cm/°C to 2.84 × 104 μΩ cm/°C, depending on the extent of Ni oxidation. The temperature coefficient of resistance (TCR) of the Ni oxide films also depended on the extent of Ni oxidation; the average TCR of Ni oxide resistors, measured between 0 and 150 °C, were 5630 ppm/°C for the 300 °C and 2188 ppm/°C for 500 °C films. Because of their high resistivity and very linear TCR, Ni oxide thin films are superior to pure Ni and Pt thin films for flow and temperature sensor applications.  相似文献   

3.
In present work, the phase equilibrium relations in the Ti-Ni-Hf ternary system, which are of great importance for the design of Ti-Ni based high temperature shape memory alloys, were investigated using diffusion triples and sixteen key equilibrated alloys. Based on the experimental results from electron-probe microscopy analysis (EPMA) and X-ray diffraction (XRD) techniques, two isothermal sections were constructed, which consist of 13 and 12 three-phase regions at 900 °C and 800 °C, respectively. Hf can substitute for Ti in TiNi and Ti2Ni phases increasing from 30, 62 at% at 800 °C to 36, 64 at% at 900 °C, respectively. The Hf7Ni10 and Hf9Ni11 phases show wide ternary composition ranges, while the solubility of Ti in HfNi5, Hf2Ni7, and HfNi phases are relatively limited. A new ternary phase of τ was detected for the first time, and the stoichiometry of τ phase is close to Ni:(Hf,Ti) = 11:14, with Ti substituting for Hf from ~5 at% to ~22 at%. The single-phase region of the τ phase became narrow as the decreasing of annealing temperature. Based on comparison of phase relations at 900 °C and 800 °C, it is speculated there is an invariant reaction TiNi + τ → HfNi + Ti2Ni at between 900 °C and 800 °C.  相似文献   

4.
This paper describes a technique for the measurement of the electrolyte temperature in an operating polymer electrolyte fuel cell (PEFC). A patterned thin film gold thermistor embedded in a 16 μm thick parylene film was laminated in the Nafion® electrolyte layer for in situ temperature measurements. Experimental results show that the sensor has a linear response of (3.03 ± 0.09) × 10−3 °C−1 in the 20–100 °C temperature range and is robust enough to withstand the electrolyte expansion forces that occur during water uptake. An electrolyte temperature increase of 1.5 °C was observed in real-time when operating the fuel cell at 0.2 V and a current density of 0.19 A/cm2. The temperature sensitivity of the present sensor is in an order of magnitude better than the conventional micro-thermocouples that have been reported. Additionally, use of micro-fabrication techniques allows for an accurate placement of the temperature sensor within the fuel cell. Simulation results show that the sensor has no significant effect on the local temperature distribution.  相似文献   

5.
Three compositions of the {Ni–25Cr–0.25 or 0.50C–1 or 2Ti}-type were studied by thermodynamic calculations for anticipating their melting temperature ranges and their microstructures at 1200 °C. In parallel the corresponding alloys were synthesized by classical foundry and subjected to Differential Thermal Analysis and exposures at 1200 °C followed by metallographic characterization. Calculations and experiments are globally consistent concerning the melting range temperatures, the microstructures in the as-cast state and after aging at 1200 °C. Good agreement was also found concerning the carbides fractions and the matrixes’ chemical compositions.  相似文献   

6.
Gas sensing characteristics of WO3 powder and its physical properties under different heat treatment conditions have been investigated. The WO3 powder was synthesized by wet process from ammonium tungstate parapentahydrate and nitric solution. The precipitated product was then calcined at 300–800 °C for 2–12 h. The physical properties of the products were characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), and BET method. It was found that the crystallite size, particle size and surface area of the WO3 powders were in the range of 30–45 nm, 0.1–3.0 μm and 1.2–3.7 m2/g, respectively. Calcination at higher temperature and longer time led to the increase of particle size by more than 300%, and reduction in specific surface area by more than 60%. However, the crystallite size was found to increase only by ∼30% under identical heat treatment. These results inferred that such heat treatment had more profound effect on crystallite aggregation than on crystallite growth. Gas sensing measurement showed that the largest change of output voltage to both ethyl alcohol and ammonia was obtained from the sensor calcined at 600 °C for 2 h, which had the highest surface area. However, the highest sensitivity which is defined as the ratio of sensor's resistance in air to that in the sample gas, Rair/Rgas, was obtained from the sensor calcined at 600 °C for 6 h due to its highest background resistance in air. Moreover, it was also found that the sensors were less sensitive to the oxygen content in the carrier gas and did not sensitive at all to water vapor.  相似文献   

7.
Temperature dependence of water vapor sorption and electro-active polymer actuating behavior of free-standing films made of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) was investigated by means of sorption isotherm and electromechanical analyses. The non-porous PEDOT/PSS film, having a specific surface area of 0.13 m2 g?1, sorbed water vapor of 1080 cm3(STP) g?1, corresponding to 87 wt%, at relative water vapor pressure of 0.95. A temperature rise from 25 °C to 40 °C lowered sorption degree, indicative of an exothermic process, where isosteric heat of sorption decreased with increasing water vapor sorption and the value reached 43.9 kJ mol?1, being consistent with the heat of water condensation (44 kJ mol?1). Upon application of 10 V, the film underwent contraction of 2.46% at 5 °C caused by desorption of water vapor due to Joule heating, which slightly decreased to 2.10% at 45 °C. The speed of contraction was one order of magnitude faster than that of expansion and less dependent on the temperature since water vapor sorbed in the film were forced to desorb by Joule heating. In contrast, the higher the temperature the faster the film expansion because diffusion coefficient increased as the temperature became higher.  相似文献   

8.
A novel Pt–Ti–O-gate Si–metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen gas sensor has been proposed by Usagawa and Kikuchi (2010) [1]. The sensors consist of unique gate structures composed of Ti and oxygen accumulated regions around Pt grains on top of a novel mixing layer of nanocrystalline TiOx and superheavily oxygen-doped amorphous Ti formed on SiO2/Si substrates. The optimum Pt/Ti thickness and annealing conditions for most hydrogen safety monitoring sensor systems are obtained by annealing Pt(15 nm)/Ti(5 nm)-gate Si–MOS structures in air around 400 °C for 2 h. One of the advantages of the Pt–Ti–O-gate Si–MISFETs after 10 min of air-diluted 1000-ppm hydrogen exposure at 115 °C are reproducible and uniform threshold voltage of Vth in addition to large sensing amplitudes at a practically important hydrogen concentration range between 100 ppm and 1%. The analysis of device characteristics of the Pt–Ti–O-gate Si–MISFETs hydrogen sensors concludes that the oxidation process of the Ti layer is consistently explained by an oxidation model that the oxygen invasion into Ti layer comes from open air through Pt grain boundaries and at the same time Ti will evacuate into the Pt surface through Pt grain boundaries. During the course of this process, the invading oxygen will be balanced with the evacuating Ti so that the Ti layer keeps nearly the same thickness with the as grown states. Ti and oxygen will remains around Pt grains named Ti and oxygen merged corridors.  相似文献   

9.
The aluminum diffusion in aluminide coatings deposited on nickel by the CVD method was investigated. The microstructure, chemical and phase compositions of coatings were examined by SEM, EDS and XRD techniques. The triple zone structure was revealed. The β-NiAl phase was on the surface of the coatings, whereas γ-(Ni) and γ′-Ni3Al formed deeper parts of the coatings. Diffusion coefficients were calculated from the concentration profiles in coatings deposited for various times (15 min, 1 h, 4 h and 8 h) at 1000 °C and 1050 °C. The procedure was based on the classic finite difference method (FDM). Diffusion coefficients in three phases were calculated simultaneously and the influence of diffusivity in one phase on the diffusivity in the neighboring phase was taken into account. The results of the calculation agree with the literature data obtained for each of the analyzed phases separately.  相似文献   

10.
Thermal bimaterial structures made of Ni and Ni-diamond nanocomposite for sensor and actuator application are proposed, fabricated, and tested. Two deflection types of thermal bimaterial structures, including upward and downward bending types, can be easily fabricated by controlling electroplating sequence of Ni and Ni-diamond nanocomposite. According to thermal performance measurement, the tip deflection of upward and downward types can reach about 82.5 μm and ?22.5 μm for a temperature change of 200 °C, respectively. In the condition, the thermomechanical sensitivity and output force are 412.5 nm/K and 97.0 μN for upward type thermal bimaterial structure; and ?112.5 nm/K and ?26.5 μN for downward type one. Due to the low electroplating process temperature (~50 °C) for both Ni-based layers, diminutive pre-deformation of as-fabricated structure and strong interlaminar bonding strength are verified by SEM and vibrational test. The resonant frequency of the structure remains unchanged after 109 cycles.  相似文献   

11.
In this study, an artificial neural networks study was carried out to predict the compressive strength of ground granulated blast furnace slag concrete. A data set of a laboratory work, in which a total of 45 concretes were produced, was utilized in the ANNs study. The concrete mixture parameters were three different water–cement ratios (0.3, 0.4, and 0.5), three different cement dosages (350, 400, and 450 kg/m3) and four partial slag replacement ratios (20%, 40%, 60%, and 80%). Compressive strengths of moist cured specimens (22 ± 2 °C) were measured at 3, 7, 28, 90, and 360 days. ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of six input parameters that cover the cement, ground granulated blast furnace slag, water, hyperplasticizer, aggregate and age of samples and, an output parameter which is compressive strength of concrete. The results showed that ANN can be an alternative approach for the predicting the compressive strength of ground granulated blast furnace slag concrete using concrete ingredients as input parameters.  相似文献   

12.
13.
The phase equilibria in the Fe–Ni–V ternary system were investigated by means of electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Three isothermal sections of the Fe–Ni–V ternary system at 1000 °C, 1100 °C and 1200 °C were established. On the basis of the obtained experimental data, the phase equilibria in the Fe–Ni–V system were thermodynamically assessed using (CALculation of PHAse Diagrams) CALPHAD method, and a consistent set of thermodynamic parameters leading to reasonable agreement between the calculated results and experimental data was obtained.  相似文献   

14.
The most practical way to get spatially broad and continuous measurements of the surface temperature in the data-sparse cryosphere is by satellite remote sensing. The uncertainties in satellite-derived LSTs must be understood to develop internally-consistent decade-scale land surface temperature (LST) records needed for climate studies. In this work we assess satellite-derived “clear-sky” LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and LSTs derived from the Enhanced Thematic Mapper Plus (ETM+) over snow and ice on Greenland. When possible, we compare satellite-derived LSTs with in-situ air temperature observations from Greenland Climate Network (GC-Net) automatic weather stations (AWS). We find that MODIS, ASTER and ETM+ provide reliable and consistent LSTs under clear-sky conditions and relatively-flat terrain over snow and ice targets over a range of temperatures from ? 40 to 0 °C. The satellite-derived LSTs agree within a relative RMS uncertainty of ~ 0.5 °C. The good agreement among the LSTs derived from the various satellite instruments is especially notable since different spectral channels and different retrieval algorithms are used to calculate LST from the raw satellite data. The AWS record in-situ data at a “point” while the satellite instruments record data over an area varying in size from: 57 × 57 m (ETM+), 90 × 90 m (ASTER), or to 1 × 1 km (MODIS). Surface topography and other factors contribute to variability of LST within a pixel, thus the AWS measurements may not be representative of the LST of the pixel. Without more information on the local spatial patterns of LST, the AWS LST cannot be considered valid ground truth for the satellite measurements, with RMS uncertainty ~ 2 °C. Despite the relatively large AWS-derived uncertainty, we find LST data are characterized by high accuracy but have uncertain absolute precision.  相似文献   

15.
Kam Leung Yeung  Li Li 《Displays》2013,34(2):165-170
We have previously shown that concurrent head movements impair head-referenced image motion perception when compensatory eye movements are suppressed (Li, Adelstein, & Ellis, 2009) [16]. In this paper, we examined the effect of the field of view on perceiving world-referenced image motion during concurrent head movements. Participants rated the motion magnitude of a horizontally oscillating checkerboard image presented on a large screen while making yaw or pitch head movements, or holding their heads still. As the image motion was world-referenced, head motion elicited compensatory eye movements from the vestibular-ocular reflex to maintain the gaze on the display. The checkerboard image had either a large (73°H × 73°V) or a small (25°H × 25°V) field of view (FOV). We found that perceptual sensitivity to world-referenced image motion was reduced by 20% during yaw and pitch head movements compared to the veridical levels when the head was still, and this reduction did not depend on the display FOV size. Reducing the display FOV from 73°H × 73°V to 25°H × 25°V caused an overall underestimation of image motion by 7% across the head movement and head still conditions. We conclude that observers have reduced perceptual sensitivity to world-referenced image motion during concurrent head movements independent of the FOV size. The findings are applicable in the design of virtual environment countermeasures to mitigate perception of spurious motion arising from head tracking system latency.  相似文献   

16.
Optical reflectance measurements were performed to determine the hydrogen response characteristics of 20 nm thick Pd0.6Au0.4 films. The response time and signal change characteristics were determined as a function of hydrogen concentrations ranging from 0.05% to 4% in a balance of dry CO2 free air. The detection limit was determined to be 0.05%, with a corresponding response time of 130 s, while at 4% hydrogen concentrations the response time was 5 s at ambient temperatures. A linear decrease of both the signal change and response time was measured within an operating temperature range between 25 °C and 100 °C for a 1% hydrogen in air gas mixture. The sensor response dependence of the Pd0.6Au0.4 film with a change in humidity was determined between ambient levels and 95% relative humidity (RH). While the signal change was independent of humidity the response time increased due to water adsorption on the Pd alloy sensing layer. A similar increase in response time was shown for 100 ppm of background CO mixed with 1% hydrogen in nitrogen at room temperature. At an elevated operating temperature of 80 °C, 100 ppm of CO did not affect the sensor response towards 1% hydrogen in a balance of nitrogen. Reliability tests have been performed over a 1-year time period and the sensing specifications have not drifted beyond 2% and 13% of the calibrated signal change and response time, respectively. A response time on the order of seconds and the proven stability of the high alloy content Pd thin film demonstrate the promising attributes of this material for use in an all-optical hydrogen sensor.  相似文献   

17.
《Displays》2006,27(3):112-116
Glasses within the Bi2O3–B2O3–BaO–ZnO system were examined as potential replacements for PbO-based glass frits with low firing temperatures. These frits are used in the transparent dielectric layer of plasma display panels (PDP). The glass transition temperature (Tg) of the prepared glasses varied between 450 and 460 °C. These glasses display dynamic dielectric properties, high transparency and thermal expansion as well as matching well with substrate glass. The thermal coefficient of expansion (TCE) was with the desired range of 81–86×10−7/K. Moreover, when the screen printed film was heat-treated at 570 °C for 30 min, optical transmittance (83%), root-mean square (rms) roughness (177.6 Å), dielectric constant (10.25) and withstand voltage (4.15 kV) satisfied the requirements necessary for transparent dielectric layers to be used in PDP applications.  相似文献   

18.
《Applied ergonomics》2011,42(1):71-75
The amount of sleep obtained between shifts is influenced by numerous factors including the length of work and rest periods, the timing of the rest period relative to the endogenous circadian cycle and personal choices about the use of non-work time. The current study utilised a real-world live-in mining environment to examine the amount of sleep obtained when access to normal domestic, family and social activities was restricted. Participants were 29 mining operators (26 male, average age 37.4 ± 6.8 years) who recorded sleep, work and fatigue information and wore an activity monitor for a cycle of seven day shifts and seven night shifts (both 12 h) followed by either seven or fourteen days off. During the two weeks of work participants lived on-site. Total sleep time was significantly less (p < 0.01) while on-site on both day (6.1 ± 1.0 h) and night shifts (5.7 ± 1.5 h) than days off (7.4 ± 1.4 h). Further, night shift sleep was significantly shorter than day-shift sleep (p < 0.01). Assessment of subjective fatigue ratings showed that the sleep associated with both days off and night shifts had a greater recovery value than sleep associated with day shifts (p < 0.01). While on-site, participants obtained only 6 h of sleep indicating that the absence of competing domestic, family and social activities did not convert to more sleep. Factors including shift start times and circadian influences appear to have been more important.  相似文献   

19.
Patient readmissions to intensive care units (ICUs) are associated with increased mortality, morbidity and costs. Current models for predicting ICU readmissions have moderate predictive value, and can utilize up to twelve variables that may be assessed at various points of the ICU inpatient stay. We postulate that greater predictive value can be achieved with fewer physiological variables, some of which can be assessed in the 24 h before discharge. A data mining approach combining fuzzy modeling with tree search feature selection was applied to a large retrospectively collected ICU database (MIMIC II), representing data from four different ICUs at Beth Israel Deaconess Medical Center, Boston. The goal was to predict ICU readmission between 24 and 72 h after ICU discharge. Fuzzy modeling combined with sequential forward selection was able to predict readmissions with an area under the receiver-operating curve (AUC) of 0.72 ± 0.04, a sensitivity of 0.68 ± 0.02 and a specificity of 0.73 ± 0.03. Variables selected as having the highest predictive power include mean heart rate, mean temperature, mean platelets, mean non-invasive arterial blood pressure (mean), mean spO2, and mean lactic acid, during the last 24 h before discharge. Collection of the six predictive variables selected is not complex in modern ICUs, and their assessment may help support the development of clinical management plans that potentially mitigate the risk of readmission.  相似文献   

20.
Heat insulation applied on outer wall surfaces of buildings for the purpose of conserving energy, can be analyzed experimentally, mathematically and by using simulation modelling. In this study, simulation modelling of insulation layer (d2), for residential buildings in 81 cities classified into four climatic regions in Turkey was investigated. This stimulus model is constructed into rule-based Mamdani-type fuzzy modelling (RBMTF), using input parameters (Uw, Te) and output parameter d2, described by RBMTF if-then rules. RBMTF has been designed using the MATLAB 7.04 fuzzy logic toolbox. The d2 was predicted using two input parameters: Uw and Te. The values for Uw ranged from 0.4 to 0.7. The values for Te ranged from ?43 °C to ?3 °C. The values for d2 ranged from 0.07 to 0.21. Seven linguistic terms were considered for each of the input and output variables, namely Very Low (L1), Low (L2), Negative Medium (L3), Medium (L4), Positive Medium (L5), High (L6), Very High (L7). R2 for the testing data were about 97.4%. Overall, RBMTF can be used as a reliable modelling method for thermal performance of multi-layer precast concrete panels used in residential buildings’ studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号