首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10(-3) to 10(-5), depending on the particular experiment.  相似文献   

2.
We present an efficient and robust setup for femtosecond stimulated Raman (FSR) spectroscopy with 60 fs and 10 cm(-1) resolution. Raman pulses of 0.5-5 ps are tunable between 450-750 nm with energies 1-10 μJ. Experimental features of the setup, signal processing, and data treatment are discussed in detail to be readily reproduced in other labs. The setup is tested by measuring FSR spectra of stilbene in solution.  相似文献   

3.
Simple cells are described for normal and differential measurements in photoacoustic spectroscopy. The differential cell allows for easy background signal correction and for comparison of related samples. The arrangement allows great flexibility in cell design for adaptation to special sample forms. The normal cell can be used for very small volumes, liquids as well as solids, and is constructed in such a way as to allow the possibility of Helmholtz resonance to occur over a range of frequencies. The two cells are compared in terms of background and maximal signal strength and examples of spectra obtained with each of them are given. The general spectrometer setup is outlined as well.  相似文献   

4.
A broadband microwave spectrometer has been constructed to determine the complex conductivity of thin metal films at frequencies from 45 MHz to 20 GHz working in the temperature range from 0.45 K to 2 K (in a (3)He cryostat). The setup follows the Corbino approach: a vector network analyzer measures the complex reflection coefficient of a microwave signal hitting the sample as termination of a coaxial transmission line. As the calibration of the setup limits the achievable resolution, we discuss the sources of error hampering different types of calibration. Test measurements of the complex conductivity of a heavy-fermion material demonstrate the applicability of the calibration procedures.  相似文献   

5.
Going beyond the usual determination of the frequency-resolved power spectrum of an electrical noise signal, we implement a setup for the determination of a frequency-resolved two-dimensional correlation spectrum. We demonstrate measurements of two-dimensional correlation spectra with sampling rates up to 180 MSamples/s and real-time numerical evaluation with up to 100% data coverage. As an example, the purely Gaussian behavior of 1/f resistor noise is demonstrated with unprecedented sensitivity by verifying the absence of correlations between different frequencies. Unlike the usual power spectrum, the correlation spectrum is shown to contain information on both the homogeneous and inhomogeneous linewidths of a signal, suggesting applications in spin noise spectroscopy and signal analysis in general.  相似文献   

6.
A setup for fluorescence upconversion spectroscopy (FLUPS) is described which has 80 fs temporal response (fwhm) for emission in the spectral range 425-750 nm. Broadband phase matching is achieved with tilted gate pulses at 1340 nm. Background from harmonics of the gate pulse is removed and sensitivity increased compared to previous designs. Photometric calibration of the upconversion process is performed with a set of fluorescent dyes. For Coumarin 153 in methanol the peak position, bandwidth, and asymmetry depending on delay time are reported.  相似文献   

7.
We report an omnidirectional electrical spectroscopy setup for studying the spin dynamics in a nanoscale magnet. It has a measureable solid angle range comprising about 50% of the total range and allows the magnetoresistance and spin-torque diode signal to be measured simultaneously at any angle to the magnetization. This setup can provide detailed information about the spin-wave resonance modes excited in a nanoscale magnet.  相似文献   

8.
A laser-based tabletop approach to femtosecond time-resolved photoelectron spectroscopy with photons in the vacuum-ultraviolet (VUV) energy range is described. The femtosecond VUV pulses are produced by high-order harmonic generation (HHG) of an amplified femtosecond Ti:sapphire laser system. Two generations of the same setup and results from photoelectron spectroscopy in the gas phase are discussed. In both generations, a toroidal grating monochromator was used to select one harmonic in the photon energy range of 20-30 eV. The first generation of the setup was used to perform photoelectron spectroscopy in the gas phase to determine the bandwidth of the source. We find that our HHG source has a bandwidth of 140 ± 40 meV. The second and current generation is optimized for femtosecond pump-probe photoelectron spectroscopy with high flux and a small spot size at the sample of the femtosecond probe pulses. The VUV radiation is focused into the interaction region with a toroidal mirror to a spot smaller than 100 × 100 μm(2) and the flux amounts to 10(10) photons/s at the sample at a repetition rate of 1 kHz. The duration of the monochromatized VUV pulses is determined to be 120 fs resulting in an overall pump-probe time resolution of 135 ± 5 fs. We show how this setup can be used to map the transient valence electronic structure in molecular dissociation.  相似文献   

9.
Features of recording spectra and performing photometric measurements of spectral lines using a digital spectrograph, which is based on an MFS-8 setup with a MAES multichannel emission spectrum analyzer (photodiode array assembly), are studied. Possibilities of optimizing the analytical signal and time parameters of the spectrum exposure for extending the linear range of the calibration curve and increasing the concentration sensitivities both in areas of low and high contents of determined elements by the atomicemission spectral analysis are shown.  相似文献   

10.
Experimental far-infrared (FIR) spectroscopy of transient species (unstable molecules, free radicals, and ions) has been limited so far in both emission and absorption (mainly by the low probability of spontaneous emission in that spectral range and the low brightness of continuum sources used for absorption measurements, respectively). Nevertheless, the FIR spectral range recently became of high astrophysical relevance thanks to several new observational platforms (HERSCHEL, ALMA...) dedicated to the study of this region suitable for the detection of the emission from cold objects of the interstellar medium. In order to complete the experimental dataset concerning transient species, three discharge experiments dedicated to the recording of high resolution FIR spectra of radicals have been developed at the Advanced Infrared Line Exploited for Spectroscopy (AILES) which extracts the bright FIR synchrotron continuum of the synchrotron facility SOLEIL. These experiments make use of a high resolution (R = 0.001 cm(-1)) Bruker IFS125 Fourier transform (FT) spectrometer. An emission setup (allowing to record spectra of radicals excited at high rotational and vibrational temperatures) and two absorption setups (exploiting the bright synchrotron source at the highest resolution available on the FT) are alternatively connected to the FT. The advantages and limitations of these techniques are discussed on the basis of the recent results obtained on OH and CH radicals. These results constitute the first FIR spectra of radicals using synchrotron radiation, and the first FIR spectrum of a C-bearing radical using FT-spectroscopy.  相似文献   

11.
We present a novel setup for the investigation of ultrafast dynamic processes in a liquid jet using time-resolved photoelectron spectroscopy. A magnetic-bottle type spectrometer with a high collection efficiency allows the very sensitive detection of photoelectrons emitted from a 10 μm thick liquid jet. This translates into good signal/noise ratio and rapid data acquisition making femtosecond time-resolved experiments feasible. We describe the experimental setup, a detailed spectrometer characterization based on the spectroscopy of nitric oxide in the gas phase, and results from femtosecond time-resolved experiments on sodium iodide solutions. The latter experiments reveal the formation and evolution of the solvated electron and we characterize two distinct spectral components corresponding to initially thermalized and unthermalized solvated electrons. The absence of dark states in photoionization, the direct measurement of electron binding energies, and the ability to resolve dynamic processes on the femtosecond time scale make time-resolved photoelectron spectroscopy from the liquid jet a very promising method for the characterization of photochemical processes in liquids.  相似文献   

12.
13.
Spectromicroscopy with the imaging technique of X-ray photoelectron emission microscopy (X-PEEM) is a microchemical analytical tool installed in many synchrotron radiation laboratories, and which is finding application in diverse fields of research. The method of sample analysis, X-ray absorption spectroscopy, does not encounter the same problems as X-ray photoemission spectroscopy when sample charging occurs, hence even good insulators may often be analyzed without any apparent artifacts in images or spectra. We show, however, that charging effects cannot be neglected. We model the effect of surface charge formation on the secondary electron yield from uniform samples to demonstrate that surface charge primarily reduces the yield of electrons which may contribute to the detected signal. We illustrate that on non-uniform insulating samples, localized centers of charge may substantially affect microscope imaging and resolution as the electrostatic field close to the surface is distorted. Finally, in certain circumstances non-uniform surface charge may lead to unexpected lineshapes in X-ray absorption spectra causing, in some extreme cases, negative spectra. These negative spectra are explained, and several strategies are reviewed to minimize the impact of sample charging when analyzing poorly conducting samples of any nature.  相似文献   

14.
Photoacoustic (PA) infrared spectroscopy enables the characterization of a wide variety of materials, affording the spectroscopist several advantages over more traditional infrared methods. While PA spectra are readily acquired using commercial instrumentation, the quality of the data can be improved substantially through the use of specialized numerical and experimental procedures. Two of these methods are the subject of this review. Specifically, this article describes (a) linearization of PA infrared spectra, a calculation that incorporates phase and amplitude information to extend the range of linearity for strongly absorbing samples, and (b) lock-in and digital signal-recovery procedures in step-scan phase-modulation PA infrared spectroscopy. Linearization yields significant improvement in band definition, especially in the low-wavenumber region. This numerical method succeeds in situations where the PA phase of the sample is less than that of the reference (carbon black). When this criterion is not met initially, the sample or reference interferograms can be manipulated prior to the calculation. The steps involved in linearization are illustrated in detail and approximations are discussed. Lock-in demodulation of the step-scan phase-modulation signal is compared to digital (software) demodulation in this study; the lock-in technique is found to be superior in several cases. The imaginary interferograms in these experiments sometimes lack a strong central feature, a situation that necessitates the application of less commonly used methods for phase correction and spectrum calculation. These methods, which are available in commercial software, include two-quadrant and stored-phase corrections. The PA phase spectrum resembles amplitude and absorption spectra when real and imaginary PA spectra are correctly calculated.  相似文献   

15.
Spin noise spectroscopy in semiconductors is an optical method that allows nearly perturbation free measurements of the spin dynamics of electrons in thermal equilibrium. The article explains the basic principles of spin noise spectroscopy and introduces an optimized experimental setup which promotes spin noise spectroscopy to an extraordinary sensitive tool. Exemplary measurements on n-doped bulk GaAs yield the temperature dependence of the electron spin relaxation time and the electron Landé g factor and reveal a dependence of the spin relaxation time on the laser probe wavelength. The magnitude and wavelength dependence of the measured spin noise signal compares well to basic calculations.  相似文献   

16.
We show that Image-EELS is suitable for detecting relatively low phosphorus concentrations in very small axoplasmic structures of squid axons. Imaging plates and a CCD camera were used as electron sensors. From image series spanning a certain energy-loss range EELS (electron energy-loss spectra) were derived by averaging read-outs from many axoplasmic particles (APs). The ratio of these spectra to spectra of the background was plotted, showing the contrast modulation as a function of the energy loss. This new approach is called EELC (electron energy-loss-dependent contrast spectroscopy). A distinct phosphorus signal was found in APs of presynaptic terminals of the squid giant synapse, in the peripheral giant axon and, as controls, in ribosomes. Biochemical experiments supported this result. In neurofilament-enriched pellets a phosphorus signal could be directly detected by serial EELS and in electron spectroscopic micrographs. After dephosphorylation of either the pellets or the extruded axoplasm with alkaline phosphatase, phosphorus signals in electron spectroscopic micrographs were absent or much reduced in size and intensity. With Image-EELS inherent limitations of traditional element detection modes in energy filtering transmission electron microscopy can be overcome. Compared with serial EELS, the selective analysis of small areas with irregular shape is possible with greatly improved signal-to-noise ratio. The identification of the element-peak in Image-EEL spectra directly proves the presence of the element within the region of interest. For small peaks, the visualization is facilitated by the contrast presentation (EELC). However, the background subtraction modes used for elemental mapping in electron spectroscopic imaging are subject to uncertainties when elemental ionization edges like the PL2,3 edge are examined. Imaging plates are very sensitive electron sensors with a wide dynamic range. Unlike photographic emulsions, they allow acquisition of image series covering a large energy-loss range without normalization of exposure times, and direct extraction of EEL spectra. Thus, the combination of Image-EELS and imaging plates is proposed as an efficient new tool for analytical electron microscopy.  相似文献   

17.
18.
High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.  相似文献   

19.
A new target station providing Fourier transform infrared (FT-IR) spectroscopy and residual gas analysis (RGA) for in situ observation of ion-induced changes in polymers has been installed at the GSI Helmholtz Centre for Heavy Ion Research. The installations as well as first in situ measurements at room temperature are presented here. A foil of polyimide Kapton HN(?) was irradiated with 1.1 GeV Au ions. During irradiation several in situ FT-IR spectra were recorded. Simultaneously outgassing degradation products were detected with the RGA. In the IR spectra nearly all bands decrease due to the degradation of the molecular structure. In the region from 3000 to 2700 cm(-1) vibration bands of saturated hydrocarbons not reported in literature so far became visible. The outgassing experiments show a mixture of C(2)H(4), CO, and N(2) as the main outgassing components of polyimide. The ability to combine both analytical methods and the opportunity to measure a whole fluence series within a single experiment show the efficiency of the new setup.  相似文献   

20.
The interest in the measurement of the elastic properties of thin films is witnessed by a number of new techniques being proposed. However, the precision of results is seldom assessed in detail. Brillouin spectroscopy (BS) is an established optical, contactless, non-destructive technique, which provides a full elastic characterization of bulk materials and thin films. In the present work, the whole process of measurement of the elastic moduli by BS is critically analyzed: experimental setup, data recording, calibration, and calculation of the elastic moduli. It is shown that combining BS with ellipsometry a fully optical characterization can be obtained. The key factors affecting uncertainty of the results are identified and discussed. A procedure is proposed to discriminate factors affecting the precision from those affecting the accuracy. By the characterization of a model transparent material, silica in bulk and film form, it is demonstrated that both precision and accuracy of the elastic moduli measured by BS can reach 1% range, qualifying BS as a reference technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号