首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
Granular Activated Carbon (GAC) adsorption filtration is commonly used in drinking water treatment to remove NOM and micro-pollutants and on base of the process conditions a certain capacity to eliminate pathogenic micro-organisms was expected. The experiences with the mandatory quantitative microbial risk assessment of Dutch drinking water revealed a lack of knowledge on the elimination capacity of this process for pathogens. The objective of the current study was to determine the capacity of GAC filtration to remove MS2, Escherichia coli and spores of Clostridium bifermentans as process indicators for pathogens and more directly of (oo)cysts of Cryptosporidium parvum and Giardia lamblia. Challenge tests with fresh and loaded GAC were performed in pilot plant GAC filters supplied with pre-treated surface water at a contact time which was half of the contact time of the full-scale GAC filters. MS2 phages were not removed and the removal of E. coli and the anaerobic spores was limited ranging from ≤0.1-1.1 log. The (oo)cysts of C. parvum and G. lamblia, however, were removed significantly (1.3-2.7 log). On base of the results of the experiments and the filtration conditions the removal of the indicator bacteria and (oo)cysts was largely attributed to attachment. The model of the Colloid Filtration Theory was used to describe the removal of the dosed biocolloids in the GAC filters, but the results demonstrated that there is a lack of quantitative knowledge about the influence of collector characteristics on the two major CFT parameters, the single collector and the sticking efficiency.  相似文献   

2.
The decimal elimination capacity (DEC) of slow sand filtration (SSF) for Cryptosporidium parvum was assessed to enable quantitative microbial risk analysis of a drinking water production plant. A mature pilot plant filter of 2.56m(2) was loaded with C. parvum oocysts and two other persistent organisms as potential surrogates; spores of Clostridium perfringens (SCP) and the small-sized (4-7microm) centric diatom (SSCD) Stephanodiscus hantzschii. Highly persistent micro-organisms that are retained in slow sand filters are expected to accumulate and eventually break through the filter bed. To investigate this phenomenon, a dosing period of 100 days was applied with an extended filtrate monitoring period of 150 days using large-volume sampling. Based on the breakthrough curves the DEC of the filter bed for oocysts was high and calculated to be 4.7log. During the extended filtrate monitoring period the spatial distribution of the retained organisms in the filter bed was determined. These data showed little risk of accumulation of oocysts in mature filters most likely due to predation by zooplankton. The DEC for the two surrogates, SCP and SSCD, was 3.6 and 1.8log, respectively. On basis of differences in transport behaviour, but mainly because of the high persistence compared to the persistence of oocysts, it was concluded that both spores of sulphite-reducing clostridia (incl. SCP) and SSCD are unsuited for use as surrogates for oocyst removal by slow sand filters. Further research is necessary to elucidate the role of predation in Cryptosporidium removal and the fate of consumed oocysts.  相似文献   

3.
Hsu BM  Yeh HH 《Water research》2003,37(5):1111-1117
Giardia and Cryptosporidium have emerged as waterborne pathogens of concern for public health. The aim of this study is to examine both parasites in the water samples taken from three pilot-scale plant processes located in southern Taiwan, to upgrade the current facilities. Three processes include: conventional process without prechlorination (Process 1), conventional process plus ozonation and pellet softening (Process 2), and integrated membrane process (MF plus NF) followed conventional process (Process 3). The detection methods of both parasites are modified from USEPA Methods 1622 and 1623. Results indicated that coagulation, sedimentation and filtration removed the most percentage of both protozoan parasites. The pre-ozonation step can destruct both parasites, especially for Giardia cysts. The microfiltration systems can intercept Giardia cysts and Cryptosporidium oocysts completely. A significant correlation between water turbidity and Cryptosporidium oocysts was found in this study. The similar results were also found between three kinds of particles (phi=3-5,5-8 and 8-10 microm) and Cryptosporidium oocysts.  相似文献   

4.
Microbial monitoring was conducted over a period of more than 1 year at three full-scale riverbank filtration (RBF) facilities, located in the United States along the Ohio, Missouri, and Wabash Rivers. Results of this study demonstrated the potential for RBF to provide substantial reductions in microorganism concentrations relative to the raw water sources. Cryptosporidium and Giardia were detected occasionally in the river waters but never in any of the well waters. Average concentrations and log reductions of Cryptosporidium and Giardia could not be accurately determined due to the low and variable concentrations in the river waters and the lack of detectable concentrations in the well waters. Average concentrations of aerobic and anaerobic spore-forming bacteria, which have both been proposed as potential surrogates for the protozoans, were reduced at the three facilities by 0.8 to > 3.1 logs and 0.4 to > 4.9 logs, respectively. Average concentrations of male-specific and somatic bacteriophage were reduced by > 2.1 logs and 3.2 logs, respectively. Total coliforms were rarely detected in the well waters, with 5.5 and 6.1 log reductions in average concentrations at the two wells at one of the sites relative to the river water. Average turbidity reductions upon RBF at the three sites were between 2.2 and 3.3 logs. Turbidity and microbial concentrations in the river waters generally tracked the river discharge; a similar relationship between the well water concentrations and river discharge was not observed, due to the low, relatively constant well water turbidities and lack of a significant number of detections of microorganisms in the well waters. Further research is needed to better understand the relationships among transport of pathogens (e.g., Cryptosporidium, Giardia, viruses) and potential surrogate parameters (including bacterial spores and bacteriophage) during RBF and the effects of water and sediment characteristics on removal efficiency.  相似文献   

5.
The kinetics of naphthalene-2-sulfonic acid (2-NSA) adsorption by granular activated carbon (GAC) were measured and the relationships between adsorption, desorption, bioavailability and biodegradation assessed. The conventional Langmuir model fitted the experimental sorption isotherm data and introduced 2-NSA degrading bacteria, established on the surface of the GAC, did not interfere with adsorption. The potential value of GAC as a microbial support in the aerobic degradation of 2-NSA by Arthrobacter globiformis and Comamonas testosteroni was investigated. Using both virgin and microbially colonised GAC, adsorption removed 2-NSA from the liquid phase up to its saturation capacity of 140 mg/g GAC within 48 h. However, between 83.2% and 93.3% of the adsorbed 2-NSA was bioavailable to both bacterial species as a source of carbon for growth. In comparison to the non-inoculated GAC, the combination of rapid adsorption and biodegradation increased the amount (by 70-93%) of 2-NSA removal from the influent phase as well as the bed-life of the GAC (from 40 to >120 d). A microbially conditioned GAC fixed-bed reactor containing 15 g GAC removed 100% 2-NSA (100 mg/l) from tannery wastewater at an empty bed contact time of 22 min for a minimum of 120 d without the need for GAC reconditioning or replacement. This suggests that small volume GAC bioreactors could be used for tannery wastewater recycling.  相似文献   

6.
7.
In this study, two types of drinking water treatment facilities (two conventional drinking water treatment plants (DWTPs) and two compact units (Cus)) were compared referring to their production capacity. Water samples were collected from three main points: (a) different water treatment steps (b) washings of sand filters and (c) distribution system at different distances from the water treatment plants. Both viruses and protozoa were concentrated from each water sample by adsorption and accumulation on the same nitrocellulose membrane filters (0.45 microm pore size). Enteroviruses were detected by plaque infectivity assay in BGM cells and HAV, HEV and Norovirus were detected by RT-PCR. Giardia and Cryptosporidium were detected by conventional staining methods and PCR. The results revealed that enterovirus load at the intake ranged between 10-15 PFU/L for the two compact units and between 4.5 and 75 PFU/L for the two conventional DWTPs. The virus load in distribution system of the first type DWTPs at 1 km from the plant was the same as that of the intake. Viruses in the other type of treatment plants CUs at 1, 5 and 7 km, were much reduced. Investigation of raw water sediments of the two DWTPs showed enterovirus counts between 12 and 17.5 PFU/L. Virus count was reduced in sand of filters after washing. Giardia cysts were equally detected by microscopy and PCR in only intake samples of EL-Hawamdia CU (33.3%) and Meet Fares DWTP (50%). Cryptosporidium oocysts were equally detected by microscopy and PCR in intake samples of Abo EL-Nomros CU (100%), EL-Hawamdia CU (66.7%) and Fowa DWTP (50%). At Meet Fares DWTP three positive intake samples for Cryptosporidium were detected by PCR, compared with only two positive samples by microscopy. Giardia cysts and Cryptosporidium oocysts were detected in raw water sediment and sand of filters before washing. Only one sample from Meet Fares DWTP sand of filters after washing was positive for both Giardia and Cryptosporidium. It can be concluded that the poor microbial quality of the water may be due to improper operational skills and management of the various water treatment plants (especially at the two high capacity treatment plants).  相似文献   

8.
Emelko MB 《Water research》2003,37(12):2998-3008
The limited efficacy of disinfectants, other than ultraviolet irradiation and ozonation, as a barrier against Cryptosporidium parvum in drinking water treatment has underscored the increased importance of oocyst removal by filtration. Currently, no reliable surrogates have been identified for C. parvum removal by filtration. As a result, evaluations of the Cryptosporidium removal by treatment operations have been performed using oocysts. It has typically been assumed that chemically inactivated oocysts are suitable surrogates for viable oocysts. Measurements of electrophoretic mobility, however, have shown that chemical inactivation changes the surface charge of Cryptosporidium oocysts. The present bench-scale research indicated that formalin-inactivated oocysts are reliable surrogates for viable oocysts during both stable filter operation and periods where filtration processes are challenged, such as coagulation failure. This finding is important because of the practical difficulties associated with using viable oocysts in filtration investigations. Poor coagulation conditions severely compromised removal of viable and inactivated oocysts by dual- and tri-media filters compared to stable operating conditions and filter ripening, emphasizing the importance of optimized chemical pre-treatment (coagulation) for the successful removal of oocysts during filtration. The treatment optimization experiments also indicated that tri-media filters offered only marginally higher oocyst removals than dual-media filters.  相似文献   

9.
Granular activated carbon (GAC) adsorbers are often the penultimate stage of surface water treatment and provide ideal habitats for invertebrates. Proliferation of chlorine-resistant invertebrates in GAC adsorbers may lead to their efflux into distribution systems, possibly resulting in contamination of customers' tap water. GAC adsorber sampling and laboratory experiments were undertaken to determine the effects of routine backwashing on GAC adsorber populations of the chlorine-resistant snail Potamopyrgus jenkinsi at a water treatment works. GAC adsorber sampling results suggested that routine backwashing altered the spatial distribution of snails, but not their overall abundance. In small-scale glass columns 40-50% of the smallest (0.3-0.6 mm shell height) juvenile snails were removed by a GAC backwash bed expansion of 30-40%; however, bed expansions of greater than 20% were not possible in the GAC adsorbers.  相似文献   

10.
As increasing water shortages continue, water re-use is posing new challenges with treated wastewater becoming a significant source of non-potable water. Rapid detection strategies that target waterborne pathogens of concern to industry are gaining importance in the assessment of water quality. This study reports on the ability to recover spiked Cryptosporidium and Giardia from a variety of industrial wastewater streams of varied water quality. Incorporation of an internal quality control used commonly in finished water-enabled quantitative assessments of pathogen loads and we describe successful analysis of pre- and part-treated wastewater samples from four industrial sites. The method used combined calcium carbonate flocculation followed by flow cytometry and epifluorescence microscopy. Our focus will now aim at characterising the ambient parasites isolated from industrial wastewater with the objective of developing a suite of highly specific platform detection technologies targeted to industrial needs.  相似文献   

11.
Urban part of Seine River serving as drinking water supply in Paris can be heavily contaminated by Cryptosporidium spp. and Giardia duodenalis. In the absence of agricultural practice in this highly urbanized area, we investigated herein the contribution of treated wastewater to the microbiological quality of this river focusing on these two parasites. Other microorganisms such as faecal bacterial indicators, enteroviruses and oocysts of Toxoplasma gondii were assessed concurrently. Raw wastewaters were heavily contaminated by Cryptosporidium and Giardia (oo)cysts, whereas concentrations of both protozoa in treated wastewater were lower. Treated wastewater, flowed into Seine River, had a parasite concentration closed to the one found along the river, in particular at the entry of a drinking water plant (DWP). Even if faecal bacteria were reliable indicators of a reduction in parasite concentrations during the wastewater treatment, they were not correlated to protozoal contamination of wastewater and river water. Oocysts of T. gondii were not found in both raw and treated wastewater, or in Seine River. Parasitic contamination was shown to be constant in the Seine River up to 40 km upstream Paris. Altogether, these results strongly suggest that treated wastewater does not contribute to the main parasitic contamination of the Seine River usually observed in this urbanized area.  相似文献   

12.
Monitoring of Cryptosporidium and Giardia river contamination in Paris area   总被引:1,自引:0,他引:1  
This study evaluates the protozoan contamination of river waters, which are used for drinking water in Paris and its surrounding area (about 615,000 m(3) per day in total, including 300,000 m(3) for Paris area). Twenty litre samples of Seine and Marne Rivers were collected over 30 months and analyzed for Cryptosporidium oocysts and Giardia cysts detection according to standard national or international methods. Cryptosporidium oocysts and Giardia cysts were found, respectively, in 45.7% and 93.8% of a total of 162 river samples, with occasional high concentration peaks. A significant seasonal pattern was observed, with positive samples for Cryptosporidium more frequent in autumn than spring, summer and winter, and positive samples for Giardia less frequent in summer. Counts of enterococci and rainfalls were significantly associated with Giardia concentration but not Cryptosporidium. Other faecal bacteria were not correlated with monitored protozoan. Marne seems to contribute mainly to the parasitic contamination observed in Seine. Based on seasonal pattern and rainfall correlation, we hypothesize that the origin of contamination is agricultural practices and possible dysfunction of sewage treatment plants during periods of heavy rainfalls. High concentrations of protozoa found at the entry of drinking water plants justify the use of efficient water treatment methods. Treatment performances must be regularly monitored to ensure efficient disinfection according to the French regulations.  相似文献   

13.
A quantitative microbial risk assessment (QMRA) of Cryptosporidium, Giardia and diarrhegenic Escherichia coli (DEC) infection was performed using Monte Carlo simulations to estimate the human health risks associated with the use of canal water for recreational purposes, unrestricted and restricted irrigation in a tropical peri-urban area. Three canals receiving municipal, agricultural, and, predominantly, industrial wastewater were investigated. Identification of pathogenic protozoans revealed the major presence of Cryptosporidium hominis and both assemblages A and B of Giardia lamblia. The highest individual infection risk estimate was found to be for Giardia in an exposure scenario involving the accidental ingestion of water when swimming during the rainy season, particularly in the most polluted section, downstream of a large wholesale market. The estimated annual risks of diarrheal disease due to infection by the protozoan parasites were up to 120-fold greater than the reported disease incidence in the vicinity of the studied district and the entire Thailand, suggesting a significant host resistance to disease beyond our model's assumptions. In contrast, annual disease risk estimates for DEC were in agreement with actual cases of diarrhea in the study area.  相似文献   

14.
The persistence and removal of enteric pathogens in constructed wetlands   总被引:2,自引:0,他引:2  
Sedimentation is thought to be one of the mechanisms of microbial reduction from wetlands used for wastewater treatment. This study compared the occurrence and survival of enteric indicator microorganisms and pathogens in the water column and sediments of two constructed surface flow wetlands in Arizona. On a volume/wet weight basis the concentration of fecal coliforms and coliphage in the water column and sediment was similar. However, on a volume/dry weight basis the numbers were one to two orders of magnitude higher in the sediment. Giardia cyst and Cryptosporidium oocyst concentrations were one to three orders of magnitude greater in the sediment compared to the water column. The die-off rates of all the bacteria and coliphage were greater in the water column than the sediment. The die-off rates of fecal coliforms in the water and sediment were 0.256log(10)day(-1) and 0.151log(10)day(-1), respectively. The die-off rates of Salmonella typhimurium in the water and sediment were 0.345log(10)day(-1) and 0.312log(10)day(-1), respectively. The die-off rates of naturally occurring coliphage in water column and sediment were 0.397log(10)day(-1) and 0.107log(10)day(-1), respectively, and the die-off rates of and PRD-1 in water and sediment were 0.198log(10)day(-1) and 0.054log(10)day(-1), respectively. In contrast Giardia die-off in the sediment was greater compared to the water column. The die-off rates of Giardia in water and sediment were 0.029log(10)day(-1) and 0.37log(10)day(-1), respectively. Coliphage survived the longest of any group of organisms in the sediment and the least in the water column. In contrast Giardia survived best in the water column and least in the sediment.  相似文献   

15.
Brown TJ  Emelko MB 《Water research》2009,43(2):331-295
Maintenance of appropriate chemical pretreatment is a critical component of ensuring proper filtration performance. Pilot-scale in-line filtration studies were performed to investigate the relative impacts of chitosan, alum, and FeCl3 coagulation on the removal of Cryptosporidium parvum oocysts and oocyst-sized polystyrene microspheres by granular media filtration. Similar removals of oocysts and microspheres were achieved when optimal coagulant doses were utilized. Sub-optimal alum and FeCl3 coagulation resulted in a deterioration filter effluent turbidity (0.2-0.3 NTU) and total particle counts (30-100 total particles ≥2 μm/mL) that were accompanied by reduced (by ∼2-3-log) median oocyst and microsphere removals by filtration. At all doses investigated, chitosan coagulation resulted in excellent turbidity and particle reductions by filtration. Nonetheless, chitosan coagulation at doses of 0.1, 0.5, and 1.0 mg/L did not result in appreciable improvements in C. parvum oocyst removal relative to complete coagulation failure (median oocyst removals were <∼1-log). As well, oocyst-sized polystyrene microspheres appear to be reasonable indicators of C. parvum oocyst removal by in-line filtration preceded by alum and FeCl3 coagulation, but not chitosan coagulation.  相似文献   

16.
Managed Aquifer Recharge (MAR) is becoming an attractive option for water storage in water reuse processes as it provides an additional treatment barrier to improve recharged water quality and buffers seasonal variations of water supply and demand. To achieve a better understanding about the level of pathogenic microorganisms and their relation with microbial indicators in these systems, five waterborne pathogens and four microbial indicators were monitored over one year in three European MAR sites operated with reclaimed wastewater. Giardia and Cryptosporidium (oo)cysts were found in 63.2 and 36.7% of the samples respectively. Salmonella spp. and helminth eggs were more rarely detected (16.3% and 12.5% of the samples respectively) and Campylobacter cells were only found in 2% of samples. At the Belgian site advanced tertiary treatment technology prior to soil aquifer treatment (SAT) produced effluent of drinking water quality, with no presence of the analysed pathogens. At the Spanish and Italian sites amelioration of microbiological water quality was observed between the MAR injectant and the recovered water. In particular Giardia levels decreased from 0.24-6.14 cysts/L to 0-0.01 cysts/L and from 0.4-6.2 cysts/L to 0-0.07 cysts/L in the Spanish and Italian sites respectively. Salmonella gene copies and Giardia cysts were however found in the water for final use and/or the recovered groundwater water at the two sites. Significant positive Spearman correlations (p < 0.05, rs range: 0.45-0.95) were obtained, in all the three sites, between Giardia cysts and the most resistant microbial markers, Clostridium spores and bacteriophages.  相似文献   

17.
A filtration procedure was devised to recover Giardia cysts from water using 5 μm Nuclepore membranes (110 mm in dia). Cysts taken from a beaver (Castor canadensis) were added to 100 l. of untreated stream water and recovered by filtration. Cysts were washed from the membrane, concentrated by centrifugation and microscopically examined. Recovery efficiencies averaged 53% at cyst concentrations between 0.5 and 45 cysts l−1. Maximum cyst recovery was observed at filtration pressures of 40–60 kPa. The advantages offered by this method over cartridge filtration methods include higher recovery efficiencies at low cyst concentrations and simpler, more rapid laboratory procedures.  相似文献   

18.
Microbial association with particles can significantly affect the fate and transport characteristics of microbes in aquatic systems as particle-associated organisms will be less mobile in the environment than their free phase (i.e. unattached) counterparts. As such, similarities or dissimilarities in the partitioning behavior of indicator organisms and pathogens may have an impact on the suitability of a particular indicator to act as a surrogate for a pathogen. This research analyzed the partitioning behavior of two pathogens (Cryptosporidium, Giardia) and several common indicator organisms (fecal coliform, Escherichia coli, Enterococci, Clostridium perfringens spores, and coliphage) in natural waters under both dry and wet weather conditions. Samples were taken from several streams in two distinct sampling phases: (i) single grab samples; and (ii) intrastorm samples obtained throughout the duration of four storms. Partitioning behavior varied by microbial type, with 15-30% of bacterial indicators (fecal coliform, E. coli, and Enterococci) associated with settleable particles compared to 50% for C. perfringens spores. Both pathogens exhibited similar levels of particle association during dry weather (roughly 30%), with increased levels observed during wet weather events (Giardia to 60% and Cryptosporidium to 40%). The settling velocities of particle-associated microbes were also estimated, with those of the bacterial indicators (fecal coliform, E. coli, and Enterococci), as well as C. perfringens spores, being similar to that of the Giardia and Cryptosporidium, suggesting these organisms may exhibit similar transport behavior. With respect to intrastorm analysis, the highest microbial concentrations, in both particle-associated and free phase, occurred during the earlier stages of a storm. The total loadings of both indicators and pathogens were also estimated over the course of individual storms.  相似文献   

19.
Iron amendment and Fenton oxidation of MTBE-spent granular activated carbon   总被引:1,自引:0,他引:1  
Fenton-driven regeneration of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves an Fe amendment step to increase the Fe content and to enhance the extent of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, ferric nitrate, ferrous sulfate) were amended separately to GAC. Following Fe amendment, MTBE was adsorbed to the GAC followed by multiple applications of H2O2. Fe retention in GAC was high (83.8-99.9%) and decreased in the following order, FeSO4·7H2O > Fe2(SO4)3·9H2O > Fe(NO3)3·9H2O > FeCl3. A correlation was established between the post-sorption aqueous MTBE concentrations and Fe on the GAC for all forms of Fe investigated indicating that Fe amendment interfered with MTBE adsorption. However, the mass of MTBE adsorbed to the GAC was minimally affected by Fe loading. Relative to ferric iron amendments to GAC, ferrous iron amendment resulted in lower residual iron in solution, greater Fe immobilization in the GAC, and less interference with MTBE adsorption. MTBE oxidation was Fe limited and no clear trend was established between the counter-ion (SO42−, Cl, NO3) of the ferric Fe amended to GAC and H2O2 reaction, MTBE adsorption, or MTBE oxidation, suggesting these processes are anion independent.  相似文献   

20.
This study evaluated granular activated carbons (GACs) using rapid small-scale column tests (RSSCTs) on methyl tert-butyl ether (MTBE) levels from 20 to 2000 microg/L, with or without the presence of tert-butyl alcohol, benzene, toluene, p-xylene (BTX) in two groundwater (South Lake Tahoe Utility District [Lake Tahoe, CA] and Arcadia Well Field [Santa Monica, CA]) and a surface water source (Lake Perris, CA). Direct comparison between two GACs was made for RSSCTs conducted with surface water from Lake Perris. The impact of natural organic matter on GAC performance was investigated and found to correspond with total organic carbon concentration in the three source waters. Significant reduction in GAC performance for MTBE due to competitive adsorption from soluble fuel components (e.g., BTX) was observed. Little or no difference in GAC usage rate or bed life was detected as the empty-bed contact time is changed from 10 to 20 min for RSSCTs conducted in the two groundwater sources, whereas the RSSCTs conducted in the surface water source exhibited significant increase in GAC usage rate as the empty-bed contact time is decreased from 20 to 10 min. This finding suggests that the higher NOM content of the surface water over the groundwater sources caused a greater competitive-adsorption effect that made more sites on the GAC to be unavailable to MTBE, thus decreasing its rate of adsorption and GAC performance for MTBE. Finally, the impact of differential influent MTBE concentration on GAC performance was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号