首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
用DSC研究环氧树脂固化动力学   总被引:11,自引:1,他引:11  
用等温DSC研究了双酚A二缩水甘油醚(E-51)与间苯二胺的固化动力学,探讨了固化机理,结果表明固化按自催化反应机理进行,体系中产生的羟基可加速反应。计算了固化反应各步的动力学参数,得到E_1=51.96kJ/mol,lnA_1=11.29,E_2=69.68kJ/mol,lnA_2=13.43。  相似文献   

2.
环氧树脂固化动力学研究进展   总被引:6,自引:0,他引:6  
差示扫描量热仪(DSC)是研究环氧树脂固化动力学的有效手段,获得动力学参数的方法分为模型拟合法和非模型拟合法2类.模型拟合法的关键在于确定动力学三因子,即反应模型、指前因子和活化能;其拟合过程需要事先选择模型及模型参数,并且等温和非等温条件下拟合得到的动力学参数差别较大,无法通过非等温条件下的数据预测等温固化行为.非模型拟合法则通过计算活化能与固化度的对应关系研究固化行为,可以避免模型及模型参数选择不当造成的误差,并且等温和非等温条件下拟合得到的动力学参数基本一致,可由非等温数据预测等温固化行为.准确的动力学方程可为优化固化工艺、提高固化产物性能提供理论基础.  相似文献   

3.
用非等温DSC技术研究了环氧树脂浇注体系在动态升温过程中的固化反应,用等转化率方法得到了体系的激活能与固化度之间的关系。采用Malek法分析动力学模型时,发现其特征值并不唯一,分析了不同特征值对模型预测结果的影响。确定了动力学模型并预测了相应的参数,结果表明该体系符合两参数自催化SB模型。模型预测与试验数据吻合得很好。  相似文献   

4.
钛酸酯催化环氧树脂固化动力学研究   总被引:6,自引:2,他引:4  
用FTIR“原位”技术,研究了钛酸酯(Tc-114)偶联剂对环氧E-44和二氨基二苯基甲烷(DDM)固化反应的催化作用,得出固化程度与时间的关系曲线。又根据DSC曲线,分别算出加有Tc-114和不加Tc-114的两个固化体系的反应表观活化能和反应级数。结果表明,Tc-114的存在使环氧固化反应活化能降低,催化作用明显。  相似文献   

5.
6.
方征平  冯煜  金邦梯 《功能材料》2004,35(Z1):2116-2120
采用DSC和FTIR研究了氰酸酯树脂/环氧树脂共混体系的固化行为,考察了环氧树脂含量对体系的固化动力学参数的影响.纯的氰酸酯树脂及氰酸酯树脂/环氧树脂共混物(质量比为91,73,55)的表观活化能依次为74.3、72.1、60.8、72.7 kJ/mol,说明少量的环氧树脂可促进氰酸酯树脂的固化反应,过量则抑制.同时还发现,固化过程中氰酸酯树脂的转化速率远大于环氧树脂,固化反应对氰酸酯基和环氧基均是一级反应.  相似文献   

7.
采用流变学手段、非等温差示扫描量热法和原位升温傅里叶变换红外光谱法研究了2种环氧树脂灌封料的固化动力学,并对其固化工艺进行设计与验证.采用Kissinger和Flynn-Wall-Ozawa方程计算得到2种灌封料的平均表观活化能分别为70.76 kJ/mol和61.61 kJ/mol.根据DSC非等温曲线外推法获得体系...  相似文献   

8.
洪晓东  王旭东  王铀  梁伟 《材料导报》2012,26(22):64-66,75
采用原位及离位傅里叶变换红外光谱(FTIR)法研究了固化剂为4,4′-二氨基二苯砜(DDS)的环氧树脂(E51)体系的固化动力学。结果表明,固化反应开始时,环氧基转化率在较短时间内达到较高水平;随时间的延长,环氧基转化率逐渐变慢。根据动力学方程求得反应级数为1.999,得出该反应是二级反应。比较原位法与离位法固化曲线得出,原位法在时间轴上是准确的,离位法在温度轴上是准确的。依据求得的反应活化能和反应常数确立了该固化体系的固化时间、温度及环氧基转化率的关系方程,得出该体系的最佳固化条件为170℃、7h。  相似文献   

9.
双酚F环氧树脂/DDM体系固化动力学的研究   总被引:2,自引:0,他引:2  
利用差示扫描量热法(DSC)和极值法对两种同分异构体比例不同的双酚F环氧树脂(BPF-EP)/DDM体系固化动力学进行了研究,求得了体系的固化动力学参数,并对同分异构体比例与固化特性之间的关系进行了初步讨论.结果表明:当2,2'-结构含量由23.8%增加到31.5%时,由Kissinger和Ozawa方法计算得到的BPF-EP/DDM固化体系的表观活化能分别由58.57 kJ·mol-1和62.53 kJ·mol-1降至46.32 kJ·mol-1和50.88 kJ·mol-1;由Crane方程求得的表观反应级数分别为0.890和0.865.  相似文献   

10.
采用工业碱木质素合成环氧树脂,在空气气氛下利用非等温热失重技术研究木质素基环氧树脂(LGEP)固化特征.采用自催化反应模型计算得到了LGEP体系的固化反应动力学参数,并得到LGEP体系的固化反应动力学模型.结果表明,自催化反应模型得到的模拟曲线与实验得到的DSC曲线的一致性较好.利用外推法得到了LGEP体系的固化凝胶温度Ti0 =454.88K,固化温度Tp0=507.55K,后处理温度T80=598.77K.通过比较得出实验结果与模型计算值较一致.  相似文献   

11.
风电叶片用环氧树脂的研究   总被引:1,自引:0,他引:1  
以BPA环氧树脂、BPF环氧树脂为基体树脂,1,4-丁二醇二缩水甘油醚为稀释剂,配制出可用于风电叶片的复合型环氧树脂.考察了不同的原料配比与力学性能的关系,并采用Statistica6.0统计软件对配方进行优化.研究结果表明:当BPA树脂:稀释剂=13.5(质量比),BPA树脂:BPF树脂=1.6(质量比),树脂固化物冲击强度为88.00KJ·m-2,拉伸强度为68.52MPa,弯曲强度为88.20MPa,其性能接近进口树脂.  相似文献   

12.
风电叶片用双酚A环氧树脂体系的研究   总被引:1,自引:0,他引:1  
为了降低E51环氧树脂体系的黏度,采用在其中添加适量活性稀释剂的方法,制成了以双酚A型E51环氧树脂为基体的风电叶片用低黏度环氧树脂体系。探讨了活性稀释剂、E51型环氧树脂以及固化剂的配比对浇铸体力学性能以及黏度的影响。结果表明,体系最佳配比为20∶100∶40。该树脂体系可望用于风电叶片的制造。  相似文献   

13.
通过非等温差示扫描量热法,结合黏度测试和傅里叶红外光谱分析,研究了不同超声波振动条件下环氧树脂体系的固化特性。基于Flynn-Wall-Ozawa/FWO、Kissinger-Akahira-Sunose/KAS和Boswell积分型动力学模型,计算了不同超声波振动下环氧树脂体系的活化能。结合Malek最大概然函数法,得到了超声振动下树脂体系的固化反应动力学方程,并与实测固化度对比进行了验证。研究表明,超声振动振幅越大,树脂体系黏度降低越明显,较小的超声波振幅振动下树脂体系活化能增大,而振幅增大后活化能有明显的降低。固化物的红外光谱分析表明,随着超声振幅的增大,羟基吸收峰减弱,表明超声效应加速了胺基加成反应或者羟基醚化反应。超声振动条件下的树脂固化反应模型符合自催化模型形式,但超声振动并不能改变树脂体系的固化反应机制。以上研究结果对设计和优化碳纤维增强树脂复合材料超声振动辅助树脂传递模塑成型(RTM)工艺具有一定的指导意义。  相似文献   

14.
E 51环氧树脂固化反应中动力学转变   总被引:3,自引:0,他引:3  
采用等温DSC法研究了E-51环氧树脂与4, 4’-二氨基二苯基砜(DDS)体系的固化反应过程, 并与已有固化模型拟合得到了170、180、190、200 ℃下的等温固化反应动力学的参数, 根据决定系数R2确定了适合的固化模型。研究表明: 当固化度小于40%时属于Kamal自催化模型; 当固化度大于40%时属于n级固化模型, 即固化反应由Kamal自催化反应向n级反应转变。   相似文献   

15.
603环氧树脂体系固化动力学模型的建立与验证   总被引:2,自引:0,他引:2       下载免费PDF全文
采用非等温差示扫描量热法(DSC)研究了603热塑增韧环氧树脂体系的固化反应动力学。研究发现,在低升温速率测试条件下603环氧树脂体系固化反应的DSC曲线有两个重叠的放热峰,通过分离两个重叠的放热峰,研究了603环氧树脂体系固化动力学的特性。利用Kissinger方法和Kamal方程分别拟合得到603树脂体系固化反应的活化能和固化动力学参数,选择三种典型固化工艺制度下预测的树脂固化反应结果与实验数据对比,验证了所建立动力学模型的可靠性。基于不同升温速率的放热曲线,通过外推法得出该树脂占总反应比例70%的第一个反应固化温度为(177.3±2.2)℃,占总反应比例30%的第二个反应的起始温度和固化温度分别为(178.6±0.7)℃和(216.9±1.7)℃。研究结果对于多组分热固性树脂体系固化动力学的分析和复合材料成型工艺的优化具有重要的指导意义。  相似文献   

16.
17.
环氧树脂潜伏性固化剂研究进展   总被引:11,自引:0,他引:11  
介绍了改性脂肪族胺类、芳香族二胺类、双氰胺类、咪唑类、有机酸酐类、有机酰肼类、路易斯酸 胺络合物类及微胶囊类环氧树脂潜伏性固化剂的研究现状  相似文献   

18.
Prebending of wind turbine blades constitutes a viable engineering solution to the problem of tower clearance, that is, ensuring that during wind turbine operation there is sufficient distance between the rotor blades and the tower to avoid collision. The prebent shape of the blade must be such that when the turbine rotor is subjected to wind and inertial loads, the blades are straightened into their design configuration. In this paper, we propose a method for accurate prediction of the prebent shape of wind turbine blades. The method relies on a stand‐alone aerodynamics simulation that provides the wind loads on a rigidly spinning rotor, followed by a series of structural mechanics simulations to determine the stress‐free prebent shape of the blade. This procedure involves only one‐way coupling between the fluid and structural mechanics, which avoids the challenges of solving the coupled fluid–structure interaction problem. The proposed methodology, which has no limitations on the blade geometry and structural modeling, is successfully applied to prebending of a 63‐m offshore wind turbine blade. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号