首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Montmorillonite exfoliated nanoclay was prepared by treating montmorillonite with an alkyalmmonium salt. It has been characterized by FT-IR spectroscopy and thermal analysis (TGA-DTA). The nanoclay composites, in which the rubber matrix was introduced by mixing solutions of the elastomer with the organically modified clay was then compounded with carbon black filler at 2.5, 5, 10, 15 phr loading level of nanoclay. The sulfur cured rubber samples were tested against a reference compound not filled with the nanoclay. Rheometrical and scorch measurements have shown that the nanoclay increases the curing speed and reduces the scorch safety. A very high reinforcement and stiffening effect due to the nanoclay was observed especially at 5 and 10 phr nanoclay filling level and especially at low extension modulus which can be increased up to 40% its original level than in the reference compound. An anisotropic behavior has been recorded in the stress-strain curve: for instance the 50% modulus was found >20% higher when measured parallel to the alignment of the exfoliated nanoclay lamellae in comparison to the modulus perpendicular to the lamellae orientation. The compounds with nanoclay show no adverse effects in tensile strength and in tear resistance, in De Mattia crack initiation and in abrasion resistance. Nanoclay reduces also the hysteresis and heat build up of the rubber compounds.  相似文献   

2.
The present work aims to prepare thermal and oxidation resistant Natural Rubber (NR) composites using antioxidant-modified nanosilica (MNS). The thermo-oxidative aging performance of the composites was evaluated by the variations in mechanical properties after aging at 100 °C for 24 h. The performance was further monitored through Scanning Electron Microscopy, Fourier Transform Infrared spectroscopy, Thermogravimetric Analysis, and Dynamic Mechanical Analysis. NR nanocomposite with 1–7.5 phr nanosilica (NS) and 3 phr MNS were prepared and its rheological properties were studied. A comparative study of the theoretical models yielded that modified Guth-Gold equation predicted Young's modulus better than other models. Thermal stability of natural rubber MNS composite was improved by 10 °C with pre-eminent mechanical properties like tensile strength and heat build-up. A linear relationship of compression set with modulus of all composites were also established. Equilibrium swelling test revealed improved crosslink density in NR MNS composite. The strong interaction between antioxidant and nanosilica enabled low migration of antioxidant in NR MNS composite. Hence its protective function after aging showed more effective than NR NS composites. These versatile functional properties of NR MNS composite suggest its potential application in electrical, electronic and high performance rubber products.  相似文献   

3.
The effects of the partial replacement of silica or calcium carbonate (CaCO3) by bentonite (Bt) on the curing behaviour, tensile and dynamic mechanical properties and morphological characteristics of ethylene propylene diene monomer (EPDM) composites were studied. EPDM/silica/Bt and EPDM/CaCO3/Bt composites containing five different EPDM/filler/Bt loadings (i.e., 100/30/0, 100/25/5, 100/15/15, 100/5/25 and 100/0/30 parts per hundred rubber (phr)) were prepared using a laboratory scale two-roll mill. Results show that the optimum cure (t90) and scorch (tS2) time decreased, while the cure rate index (CRI) increased for both composites with increasing Bt loading. The tensile properties of EPDM/CaCO3/Bt composites increased with the replacement of CaCO3 by Bt from 0 to 30 phr of Bt. For EPDM/silica/Bt composites, the maximum tensile strength and Eb were obtained at a Bt loading of 15 phr, with enhanced tensile modulus on further increase of Bt loading. The dynamic mechanical studies revealed a strong rubber-filler interaction with increasing Bt loading in both composites, which is manifested by the lowering of tan δ at the glass transition temperature (Tg) for EPDM/CaCO3/Bt composites and tan δ at 40 °C for EPDM/silica/Bt composites. Scanning electron microscopy (SEM) micrographs proved that incorporation of 15 phr Bt improves the dispersion of silica and enhances the interaction between silica and the EPDM matrix.  相似文献   

4.
Alkanolamide (ALK) and Aminopropyltriethoxy Silane (APTES) were incorporated separately into silica-filled SMR-L compounds at 1.0, 3.0, 5.0 and 7.0 phr. It was found that compounds with both ALK and APTES exhibited cure enhancement, better filler dispersion and greater rubber-filler interaction. Both additives also produced modulus and tensile enhancements in the silica-filled SMR-L compounds, especially up to a 5.0 phr loading. At a similar loading, ALK exhibited higher reinforcing efficiency of silica than APTES.  相似文献   

5.
This work investigated thermal neutron shielding, cure characteristics and mechanical properties of natural rubber (NR) and wood/NR composites with addition of either boron oxide (B2O3) or boric acid (H3BO3) for potential use as flexible shielding materials. The results showed that increase in the B2O3 or H3BO3 content from 0 to 80 phr and 0–50 phr in 10-phr increments, respectively, could improve thermal neutron shielding properties but reduced overall tensile properties, while the addition of 20-phr wood particles in wood/NR composites improved surface hardness and dimensional stability. Furthermore, the values of the Half Value Layer (HVL), which represent the required thickness of material to attenuate half of the incoming neutrons, were evaluated at a content of 80-phr B2O3 by varying thickness of both NR and wood/NR composites from 2.5 mm to 20.0 mm in 2.5-mm increments. The results indicated that the HVL values were approximately the same at 3.5 mm. Hence, the overall properties investigated in this work suggested great potential of these composites to be used as effective thermal neutron shielding materials.  相似文献   

6.
A feasibility study was carried out on the utilization of Alkanolamide (ALK) on silica reinforcement of natural rubber (NR) by using a semi-efficient cure system. The ALK was incorporated into the NR compound at 1.0, 3.0, 5.0, 7.0 and 9.0 phr. An investigation was carried out to examine the effect of ALK on the cure characteristics and properties of NR compounds. It was found that ALK gave shorter scorch and cure times for silica-filled NR compounds. ALK also exhibited higher torque differences, tensile modulus, tensile strength, hardness and crosslink density of up to 5.0 phr of ALK loading, and then decreased with further increases of ALK loading. The resilience increased with increased ALK loading. Scanning electron microscopy (SEM) micrographs proved that 5.0 phr of ALK in the silica-filled NR compound exhibited the greatest matrix tearing line and surface roughness due to higher reinforcement level of the silica, as well as better dispersion and cure enhancement.  相似文献   

7.
Natural fiber-reinforced nanocomposites were prepared by incorporating wild cane grass fiber and organically modified montmorillonite (MMT) nanoclay into polyester resin. The composites were formulated up to a maximum volume of fiber of approximately 40% and their mechanical properties were investigated. The mean tensile strength and tensile modulus of nanoclay-filled wild cane grass fiber composites are 6.3% and 18.3% greater than those of wild cane grass fiber composites, respectively, without addition of nanoclay at maximum percentage volume of fiber. The mean flexural strength of nanocomposites at maximum percentage volume of fiber was increased to a maximum of 221 Mpa and flexural modulus to 4.2 Gpa. The mean impact strength of nanoclay-filled wild cane grass fiber composites was increased to 376.7 J/m at maximum percentage volume of fiber. The weight loss of nanoclay-filled wild cane grass fiber/polyester composites was 30% and 22% less than that of composites without nanoclay at maximum percentage volume of fiber. The results indicated that the use of nanoclay showed significant improvement in all the mechanical properties of wild cane grass fiber-reinforced composites.  相似文献   

8.
In this research, fully environment-friendly, sustainable and biodegradable ‘green’ composites were fabricated. A novel material comprised of microfibrillated cellulose and laponite clay with different inorganic/organic ratios (m/m) was prepared. The composites were characterized by tensile, bending and water absorption tests as well as dynamic mechanical analysis. The morphologies of these nanocomposites were evaluated through scanning electron microscopy. Results showed considerable improvement of mechanical properties; specifically in elastic modulus, tensile strength and flexural modulus with the addition of nanoclay up to 7.5 wt% nano-clay. The modulus of elasticity increased significantly by about 26 % at 5 wt% nanocaly. The flexural modulus increased by about 90 % at 7.5 wt% nanoclay. However, with an increased load of clay in the nanocomposite, the mechanical properties decreased due to the agglomeration of excessive nanoclay. The storage modulus was significantly increased at high temperature with increasing the load of nanoclay.  相似文献   

9.
Graphene nanoplatelets (GnP) and α-MnO2 decorated GnP were integrated into an ethylene vinyl acetate (EVA) matrix using the dual mixing method (solution followed by melt mixing). GnP was added in 1, 3, 5, 8, 10 and 15 phr loadings into an EVA matrix to obtain composites and evaluate their various properties suitable for mechanical and electrical applications. The graphene nanoplatelets were further decorated with α-MnO2 which was subsequently integrated into EVA at an 8 phr loading to form composites. It was observed in the GnP-EVA composites, that with an increasing GnP content, a substantial increase in the tensile strength (188%) over the neat polymer was observed at a 10 phr loading but reduced thereafter at a 15 phr loading. Dielectric permittivity of the composites were observed to increase with an increasing filler loading, the addition of α-MnO2 also having a beneficial effect. Conductivity as well as the electromagnetic interference shielding performance were improved with increasing GnP concentrations. A maximum 28 dB of shielding was observed in the 15 phr loaded GnP-EVA composite whereas the α-MnO2 decorated GnP-EVA composite showed a shielding efficiency of 22 dB at a concentration of 8 phr for a thickness of 2 mm with excellent thermal and mechanical properties. Overall, the composite material will find its application as a flexible EMI shielding material.  相似文献   

10.
This paper reports the improvement of the mechanical properties of epoxy/nanoclay/multi-walled carbon nanotube (MWNT) nanocomposites prepared by the solution casting method for a range of pre-cure temperatures (room temperature, 50, and 70 °C), cure temperature (120, 130, and 140 °C), nanoclay content (0.5, 1.0, 1.5 wt%) and content of MWNT (0.2, 0.6, 1.0 wt%) for three levels. The influence of these parameters on the mechanical properties of epoxy/nanoclay/MWNT has been investigated using Taguchi's experimental design. The output measured responses are the tensile properties (tensile modulus, tensile strength and strain at break), impact strength and fracture toughness. From the Analysis of Mean (ANOM) and Analysis of Variance (ANOVA), MWNT content, pre-cure temperature and cure temperature had the most significant effects for the impact strength with contribution percentages of 38%, 28% and 23% respectively. However, for the fracture toughness and strain at break, the enhancements of properties come from the nanoclay content (59%), MWNT content (18%) and pre-cure temperature (23%). While the improvement in tensile strength was influenced by nanoclay and MWNT content, the cure temperature has a stronger effect on the tensile modulus. In this respect, Taguchi method points to the Taguchi method, in this way, points to the dominant parameters and gives the optimum parameter settings for each mechanical property. Confirmation experiments were performed with the optimum parameter settings and the mechanical properties were measured compared with the predicted results.  相似文献   

11.
《先进技术聚合物》2018,29(1):234-243
In this study, sepiolite nanoclay is used as reinforcing agent for poly(lactic acid) (PLA)/(styrene‐ethylene‐butylene‐styrene)‐g‐maleic anhydride copolymer (SEBS‐g‐MA) 90/10 (w/w) blend. Effects of sepiolite on thermal behavior, morphology, and thermomechanical properties of PLA/SEBS‐g‐MA blend were investigated. Differential scanning calorimetry results showed 7% improvement in crystallinity at 0.5 wt% of sepiolite. The nanocomposite exhibited approximately 36% increase in the tensile modulus and 17% increase in toughness as compared with the blend matrix at 0.5 and 2.5 wt% of sepiolite respectively. Field emission scanning electron microscopy and transmission electron microscopy images exhibited sepiolite‐induced morphological changes and dispersion of sepiolite in both PLA and SEBS‐g‐MA phases. Dynamic mechanical analysis and wide angle X‐ray diffraction present evidences in support of the reinforcing nature of sepiolite and phase interaction between the filler and the matrix. This study confirms that sepiolite can improve tensile modulus and toughness of PLA/SEBS‐g‐MA blend.  相似文献   

12.
Dynamic mechanical behaviour of natural rubber-silica composites was studied by a frequency sweep method at different temperatures (40 °C,70 °C and 100 °C) using a dynamic mechanical analyzer and a rotorless rheometer, RPA, in an attempt to establish a correlation between the two. The composites with silica content up to 40 phr were studied. It was found that the dependence of dynamic modulus on the frequency as obtained from both the instruments followed a similar trend. This suggests that the dynamic mechanical properties of rubber compounds can be determined even during curing. A correlation could be arrived at between the two sets of data, making it possible to predict one set knowing the other. The impact of silane coupling agent, bis (3-triethoxysilylpropyl tetrasulphide), TESPT, on viscoelasticity was also investigated. The mechanical properties were improved in the presence of TESPT. Additionally, an increase in thermal stability was also observed in the presence of TESPT. Scanning electron micrographs showed the better filler dispersion in the case of silane-coupled silica composites.  相似文献   

13.
Ablative nanocomposites based on nanoclay‐dispersed addition curable propargylated phenolic novolac (ACPR) resin, reinforced with chopped silica fiber, were investigated for their thermal response behavior under simulated heat flux conditions corresponding to typical atmospheric re‐entry conditions. Organically modified nanoclay (Cloisite 30B) was incorporated to different extents (1–10%) in the ACPR resin matrix containing silica fiber to form the composite. The composites displayed optimum mechanical properties at around 3 wt% of nanoclay loading. The resultant composites were evaluated for their ablative characteristics as well as mechanical, thermal and thermo‐physical properties. The reinforcing effect of nanoclay was established and correlated to the composition. The mechanical properties of the composites and its pyrolysed product improved at moderate nanoclay incorporation. Plasma arc jet studies revealed that front wall temperature is lowered by 20°C and that at backwall by 10–13°C for the 3 wt% nanoclay‐incorporated composites due to impedance by nanoclay for the heat conduction. Nanoclay diminished the coefficient of thermal expansion by almost 50% and also reduced the flammability of the composites. The trend in mechanical properties was correlated to the microstructural morphology of the composites. The nanomodification conferred better strength to the pyrolysed composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Continuous carbon fiber reinforced poly-ether-ether-ketone (CCF/PEEK) composites have attracted significant interests in mission-critical applications for their exceptional mechanical properties and high thermal resistance. In this study, we additively manufactured CCF/PEEK laminates by the Laser-assisted Laminated Object Manufacturing technique, which was recently reported by the authors. The effects of laser power and consolidation speed on the flexural strength of the CCF/PEEK composites were studied to obtain the optimal process parameters. Hot press postprocessing was performed to further improve the mechanical properties of the composites. Various fiber alignment laminates were prepared, and the flexural and tensile properties were characterized. The hot press postprocessing 3D printed unidirectional CCF/PEEK composites exhibited ultrahigh flexural modulus and strength of 125.7 GPa and 1901.1 MPa, respectively. In addition, the tensile modulus and strength of the composites reached 133.1 GPa and 1513.8 MPa. The results showed that the fabricated CCF/PEEK exhibited superior mechanical performance compare to fused filament fabrication (FFF) printed carbon fiber reinforced thermoplastics (CFRTP).  相似文献   

15.
This study explores the effects of 3-glycidoxypropyltrimethoxysilane (3-GPTS) modified Na-montmorillonite (Na-Mt) nanoclay addition on mechanical response of unidirectional basalt fiber (UD-BF)/epoxy composite laminates under tensile, flexural and compressive loadings. Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and simultaneous thermal analysis (STA) data confirmed the reaction mechanism between the silane compound and Mt. It was demonstrated that addition of 5 wt % 3-GPTS/Mt resulted in 28%, 11% and 35% increase in flexural, tensile and compressive strengths. Scanning electron microscopy (SEM) clarified the improvement in the adhesion between the basalt fibers and matrix in the case of Mt-enhanced epoxy specimens. Also, a theoretical route based on a Euler-Bernoulli beam-based approach was employed to estimate the compressive properties of the composites. The results demonstrated good agreement between theoretical and experimental approaches. Totally, the results of the study show that matrix modification is an effective strategy to improve the mechanical behavior of fibrous composites.  相似文献   

16.
EPDM composites filled with short flax fibers were prepared by melt blending procedure. The effects of fiber loading on the mechanical, thermal and water uptake characteristics were studied. The physico-mechanical, morphological thermal properties and water absorption behavior were discussed using tensile testing, differential scanning calorimetry, thermogravimetrical analysis and scanning electron microscopy. Scanning electron microscopy revealed that the flax fibers were well dispersed in the polymer matrix. The tensile strength and hardness of the composites were found to be improved at higher fiber loading. The water absorption pattern of EPDM/fiber composites at room temperature follows a Fickian behavior for composites with 10, 15 and 20 phr flax fiber.  相似文献   

17.
Rubber blend of acrylonitrile butadiene rubber (NBR) and ethylene-propylene diene monomer (EPDM) rubber (50/50) has been loaded with increasing contents, up to 100 phr, of reinforcing filler, namely, high abrasion furnace (HAF) carbon black. Prepared composites have been subjected to gamma radiation doses up to 250 kGy to induce radiation vulcanization under atmospheric conditions. Mechanical properties, namely, tensile strength (TS), tensile modulus at 100% elongation (M100), and hardness have been followed up as a function of irradiation dose and degree of loading with filler. On the other hand, variation of the swelling number as a physical property, as a function of same parameters, however, in car oil as well as brake oil has been undertaken. In addition, the electrical properties of prepared composites, namely, their electrical conductivity, were also evaluated. The thermal behavior of the prepared composites was also investigated. The results obtained indicate that improvement has been attained in different properties of loaded NBR/EPDM composites with respect to unloaded ones.  相似文献   

18.
The surface functionalization of graphene and the preparation of functionalized graphene/ethylene vinyl acetate co-polymer (EVA) composites by solution mixing are described. Octadecyl amine (ODA) was selected as a surface modifier for the preparation of functionalized graphene (ODA-G) in an aqueous medium. The ODA-G was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, which confirm the modification and reduction of graphite oxide to graphene. Atomic force microscopy shows that the average thickness of ODA-G is ca. 1.9 nm. The ODA-G/EVA composites were characterized by X-ray diffraction and transmission electron microscopy, which confirms the formation of ODA-G/EVA composites. Measurement of tensile properties shows that the tensile strength of the composites (with 1 wt.% ODA-G loading) is ∼74% higher as compared to pure EVA. Dynamic mechanical analysis shows that the storage modulus of the composites is much higher than that of pure EVA. The thermal stability of the composite with 8 wt.% of ODA-G is ∼42 °C higher than that of pure EVA. The electrical resistivity has also decreased in the composites with 8 wt.% of ODA-G.  相似文献   

19.
The effect of incorporating sorbic acid (SA), an echo-friendly curing agent, and silica or carbon black (CB) filler, as well as gamma irradiation on the physico-chemical, mechanical and thermal properties of ethylene propylene diene monomer rubber (EPDM) was investigated. The results indicated that the developed composites revealed improvement in the studied parameters over the untreated samples. Filler incorporation into rubber matrix has been proven a key factor in enhancing the swelling resistance, tensile strength and thermal properties of the fabricated composites. The improvement in tensile strength and modulus was attributed to better interfacial bonding via SA. Alternatively, a comparison was established between the performance of the white and black fillers. The utmost mechanical performance was reported for the incorporated ratios 10 phr SA and 40 phr white filler into a 50 kGy irradiated composite. Meanwhile, the incorporation of CB yielded better thermally stable composites than those filled with silica at similar conditions.  相似文献   

20.
50/50 NR/NBR blends with various MWCNT loadings were prepared by mixing with MWCNT/NR masterbatches on a two-roll mill and sheeted off at the smallest nip gap. Then, the effect of milling direction, machine direction (MD) and transverse direction (TD), on the mechanical and electrical properties of the blends was elucidated. Dichroic ratio and SEM results confirmed that most of the MWCNTs were aligned along MD when MWCNT was less than 4 phr, and the number of agglomerates increased when MWCNT was more than 4 phr. Additionally, anisotropic properties were clearly observed when 4 phr MWCNT was loaded. At 4 phr MWCNT, 100% modulus and tensile strength in the MD were about 1.5 and 1.3 times higher than those in the TD, respectively. Moreover, electrical conductivity in the MD was superior to that in the TD by about 3 orders of magnitude. Results from dynamic mechanical tests also showed that the maximum tan δ in the MD sample was lower than that in the corresponding TD sample. In addition, the storage modulus at 30 °C for the MD sample containing 4 phr MWCNT was 1.15 higher than that of the corresponding TD sample. This stronger reinforcement efficiency resulted from the combination of the greater alignment and dispersion of most MWCNTs in the MD sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号