首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of pH and CaC12 on the rheology and physical stability of emulsions stabilized by whey protein isolate (WPI) has been studied. The particle size, creaming index and shear viscosity of 10 wt% soy bean oil-in-water emulsions (d=0.55 μm) were measured with varying pH (3, 5 and 7) and CaC12 concentration (0–150 mM). In the absence of CaCl2 extensive droplet aggregation occurred around the isoelectic point of the whey proteins (4<pH<6) because of their low electrical charge. In the presence of CaC12, extensive droplet aggregation, viscosity enhancement and creaming instability occurred at pH 7 for CaC12>3 mM. These effects were much less pronounced in emulsions at pH 3 even at 150 mM CaC12. Droplet aggregation, creaming and viscosity of emulsions at pH 5 were fairly independent of CaC12 concentration. Droplet aggregation was induced by CaC12 probably because of the reduction in electrostatic repulsion between droplets. Re-stabilization of oil-in-water emulsions at high CaC12 concentrations was not observed in this study.  相似文献   

2.
ABSTRACT: The particle size and zeta potential of model beverage emulsions (0.01 wt% soybean oil-in-water emulsions, d ≅ 1 mm) stabilized by gum arabic, modified starch, or whey protein isolate (WPI) were studied with varying pH (3 to 9), CaCl2 concentration (0 to 25 mM), and temperature (30 °C to 90 °C). Temperature, pH, CaCl2 strongly influenced emulsions stabilized by WPI because its stabilizing mechanism was mainly electrostatic repulsion, but not those stabilized by gum arabic or modified starch because their stabilizing modes of action were mainly steric repulsion. This study may have important implications for the application of WPI as an emulsifier in beverage emulsions.  相似文献   

3.
ABSTRACT: The oxidative stability of polyunsaturated lipids can be improved by incorporating them in oil droplets surrounded by positively charged whey protein isolate (WPI) membranes. This study dealt with the factors that influence the physical properties of WPI-stabilized oil-in-water emulsions at pH 3. Emulsions containing 5 to 50 wt% corn oil and 0.5 to 5.0 wt% WPI (protein-to-oil ratio of 1:10) were prepared at pH 3. The apparent viscosity of the emulsions increased appreciably at oil concentrations ≥ 35 wt%; however, the particle size was relatively independent of oil concentration. The influence of NaCl (0 to 250 m M ) on the physical properties of 28 wt% emulsions was examined. Significant increases in mean particle size, apparent viscosity, and creaming instability occurred at ≥150 m M NaCl, which were attributed to flocculation induced by screening of the electrostatic repulsion between droplets. The influence of heat treatment (30°C to 90°C for 30 min) on 28 wt% emulsions was examined in the absence and presence of salt, respectively. At 0 m M NaCl, heating had little effect on the physical properties of the emulsions, presumably because the electrostatic repulsion between the droplets prevented droplet aggregation. At 150 m M NaCl, the mean particle diameter, apparent viscosity, and creaming instability of the emulsions increased considerably when they were heated above a critical temperature, which was 70°C when salt was added before heating and 90°C when salt was added after heating. These results have important implications for the design of WPI-stabilized emulsions that could be used to incorporate functional lipids that are sensitive to oxidation, for example, ω-3 fatty acids.  相似文献   

4.
The influence of pH and CaCl2 on the physical stability of dilute oil-in-water emulsions stabilized by whey protein isolate has been studied. The particle size, zeta potential and creaming stability of 0.05 wt% soy bean oil-in-water emulsions (d ≈ 0.53 μm) were measured with varying pH (3 to 7) and CaCl2 concentration (0 to 20 μM). In the absence of CaCl2 extensive droplet aggregation occurred around the isoelectric point of the whey proteins (4 < pH < 6) because of their low electrical charge, which led to creaming instability. Droplet aggregation occurred at higher pH when CaCl2 was added to the emulsions. The minimum concentration of CaCl2 required to promote aggregation increased as the pH increased. Aggregation was induced in the presence of CaCl2 probably because of the reduction in electrostatic repulsion between droplets, caused by binding of counter ions to droplet surfaces and electrostatic screening effects.  相似文献   

5.
The influence of calcium ions and chelating agents on the thermal stability of model nutritional beverages was examined. Oil-in-water emulsions (6.94% (w/v) soybean oil, 0.35% (w/v) WPI, 0.02% (w/v) sodium azide, 20 mM Tris buffer, 0–10 mM CaCl2, and 0–40 mM EDTA or citrate, pH 7.0) were stored at temperatures between 30 and 120 °C for 15 min. The particle size, particle charge, creaming stability, rheology, and free-calcium concentration of the emulsions were then measured. In the absence of chelating agents, appreciable droplet aggregation occurred in emulsions held at temperatures from 80 to 120 °C, which led to increased emulsion particle diameter, shear-thinning behavior, apparent viscosity, and creaming instability. Addition of chelating agents to the emulsions prior to heating decreased, but did not prevent, droplet aggregation in the emulsions. EDTA was more effective than citrate in decreasing droplet aggregation. Heat treatment increased the amount of chelating agents required to prevent droplet aggregation in the emulsions. Free-calcium concentration and droplet surface potential was independent of heat-treatment temperature, indicating that the performance of the chelating agents in binding calcium ions was not affected by the heat treatment. It was suggested that increased hydrophobic attractive interactions between the droplets occurred during heating, which induced droplet aggregation.  相似文献   

6.
Electrostatic interactions between polysaccharides and proteins at oil–water interfaces alter the physicochemical properties and stability of emulsions. In this research, we studied the influence of chitosan addition on the properties of oil-in-water emulsions containing whey protein-coated lipid droplets. Experiments were carried out under conditions where the protein and polysaccharide had similar charges (pH 3.0) or opposite charges (pH 6.5). At pH 3.0, chitosan addition (0–0.025%) had little influence on droplet charge, aggregation, creaming stability or shear viscosity of whey protein emulsions, which was attributed to the fact that the cationic chitosan molecules did not adsorb to the cationic droplet surfaces due to electrostatic repulsion. At pH 6.5, chitosan addition caused a decrease in particle negative charge, an increase in particle size, a decrease in creaming stability, and an increase in viscosity. These effects were attributed to droplet aggregation caused by charge neutralization and bridging resulting from attraction of cationic chitosan molecules to anionic patches on the protein-coated droplet surfaces. Addition of cationic polyelectrolytes to protein-stabilized emulsions may be utilized to control their physicochemical properties, stability and biological fate, which may be useful for developing commercial products with novel or improved functional properties.  相似文献   

7.
The shortening of shelf-life of food emulsions is frequently due to poor creaming and lipid oxidation stability. The lipid oxidation of O/W emulsions can be inhibited by rice dreg protein hydrolysate (RDPH); however, emulsions were stabilized by Tween-20. Polysaccharides can control the rheology and network structure of the aqueous continuous phase by increasing viscosity and yield stress, hence retarding phase separation and gravity-induced creaming, especially for xanthan gum. The objective of this research was to evaluate whether emulsions formed with 2 wt% RDPH and stabilized by xanthan gum (0–0.5 wt%) could produce 20 % (v/v) soybean oil-in-water emulsions that had good physical and oxidative stability. The degree of flocculation of droplets as a function of xanthan gum concentration was assessed by the microstructure, rheology, and the creaming index of emulsions. Addition of xanthan gum prior to homogenization had no significant effect on the mean droplet diameter in all emulsions studied. Increase in xanthan gum concentration led to the increase in creaming stability of emulsions, due to an increase in viscosity of the continuous phase and/or the formation of a droplet network with a yield stress, as well as the enhanced steric and electrostatic repulsion between the droplets. Lipid oxidation of the emulsions was significantly inhibited at xanthan gum concentrations of 0.12 wt% or above with RDPH, which could due to the fact that xanthan gum increases the viscosity of the aqueous phase and hindered the diffusion of oxidants to the oil droplet surface area, synergistic effect between RDPH and xanthan gum to suppress oil peroxidation, and metal ion chelation capability of xanthan gum. Thus, stable protein hydrolyzates-type emulsions could be obtained with increasing concentration of xanthan gum.  相似文献   

8.
This study examines the influence of interfacial composition on the freeze–thaw stability of oil-in-water emulsions. Three 5% w/w oil-in-water emulsions (5 mM phosphate buffer, pH 6.0) were prepared using the layer-by-layer electrostatic deposition method that had different interfacial compositions: (i) primary emulsion (β-Lg); secondary emulsion (β-Lg–ι-carrageenan); (iii) tertiary emulsion (β-Lg–ι-carrageenan–gelatin). The primary, secondary and tertiary emulsions were subjected to from one to three freeze–thaw cycles (−20 °C for 22 h, +40 °C for 2 h) in the absence or presence of sucrose (10% w/w), and then their stability was assessed by ζ-potential, particle size, microstructure and creaming stability measurements. In the absence of sucrose, the primary and secondary emulsions were highly unstable to droplet aggregation and creaming after three freeze–thaw cycles, whereas the tertiary emulsion was stable, which was attributed to the relatively thick biopolymer layer surrounding the oil droplets. In the presence of 10% w/w sucrose, all of the emulsions were much more stable, which can be attributed to the ability of sucrose to increase the amount of non-frozen aqueous phase in the emulsions. The interfacial engineering technology used in the study could therefore lead to the creation of food emulsions with improved stability to freezing and thawing.  相似文献   

9.
Stress relaxation and dynamic measurements were carried out on κ-carrageenan and agarose gels to examine the effect of alkali metal ions. The elastic modulus of κ-carrageenan gels increase remarkably by adding alkali metal ions Li+, Na+, K+, Cs+. This was explained as follows: the electrostatic repulsion of sulfate groups in κ-carrageenan gels are prevented by the shielding action of the alkali metal ions stabilizing the double helical structure of κ-carrageenan gels. The increase of the modulus was in the order: Cs+ > K+≫ Na+ > Li+. The difference between these two groups (Cs+, K+) and (Na+, Li+) is that the former group belongs to the structure disordering ions while the latter group belongs to the structure ordering ions. Thus, the former group prevents the repulsion of sulfate groups more directly than the latter. Agarose gel, which lacks sulfate groups, is not influenced so much by adding the alkali metal ions.  相似文献   

10.
The influence of sucrose addition and type of salt (NaCl; Morton Lite salt: 50% NaCl and 50% KCl, and Mineral salt: 65% NaCl, 25% KCl and 10% MgSO4) on the rheological properties of O/W emulsions containing locust bean gum was analyzed. Flow curves over the range 0.1 to 100 s−1 and transient flow curves at 0.2 s−1, at 20 and 30C were obtained for 12 different emulsions, containing 30% (w/w) of sunflower oil. The K and n power law parameters and the hysteresis loop area (HL) were evaluated from the flow curve. So were the Hahn parameters from time-dependent stress decay fitting. Rheological behaviour of emulsions was affected by the type of salt and the presence of sucrose. Changes in solvent properties of the continuous phase in the emulsions on the macromolecules present could be responsible for the different behaviour. The ageing effect on flow behaviour parameters and on the hysteresis loop area was also studied. Evolution of rheological parameters during emulsion storage suggests that increase of ionic strength and polar solutes concentration decrease the stabilizing properties of locust bean gum.  相似文献   

11.
In this study the effect of Lepidium perfoliatum seed gum on the properties of whey protein concentrate (WPC) stabilized corn oil-in-water emulsions at pH 7 was investigated. Various concentrations (0–0.6% w/v) of L. perfoliatum seed gum were used together with 2% (w/v) WPC to emulsify corn oil in water at a ratio of 1:5. Quality attributed such as particle size distribution, creaming profile and coalescence rate during storage at 4 and 25 °C; surface and interfacial tension; zeta potential and viscosity of the emulsions were determined. The results indicated that the addition of L. perfoliatum seed gum had no significant effect on zeta potential but the surface and interfacial tension increased with the rise of gum concentration. It was also found that the addition of L. perfoliatum seed gum to WPC emulsions at a critical concentration of 0.2% (w/v) caused flocculation of oil droplets, which resulted in marked increase in particle size and the creaming rate. However at higher gum concentrations beyond this value, the particle size remained constant, apparently because of the high viscosity of the aqueous phase. At all concentrations tested, emulsions stored at 4 °C were more stable except for those containing 0.2% L. perfoliatum seed gum.  相似文献   

12.
Corn oil-in-water emulsions (20 wt%, d32~ 0.6 μm) stabilized by 2 wt% whey protein isolate were prepared with a range of pH (3–7) and salt concentrations (0–100 mM NaCl), and particle size, rheology and creaming were measured at 30°C. Appreciable droplet flocculation occurred near the isoelectric point of whey protein (pH 4–6), especially at higher NaCl concentrations. Droplet flocculation increased emulsion viscosity and decreased stability to creaming. Results are related to the influence of environmental conditions on electrostatic and other interactions between droplets.  相似文献   

13.
为改善蛋黄(egg yolk,EY)在酸性乳液体系的物理稳定性,采用EY蛋白与植酸(phytic acid,PA)形成静电复合物稳定EY乳液。研究酸性条件下PA质量分数(0%~0.8%)对EY蛋白及EY乳液物理稳定性的影响。结果表明,pH 3.0时,EY与0.012 5%~0.8% PA形成不溶性的静电复合物EY-PA;最优质量分数(0.2%)PA与含1%蛋白的EY形成复合物制备乳液较对照组的乳液黏度升高,粒径及乳析指数显著降低(P<0.05),界面蛋白质吸附量显著提高(P<0.05),乳滴分布更均匀,乳液的抗聚结效果提高。因此,EY蛋白与PA形成的静电复合物可调控EY乳液的理化特性,提高EY在酸性乳液体系的物理稳定性。  相似文献   

14.
研究大豆可溶性多糖(soybean soluble polysaccharides,SSPS)及不同浓度的Fe2+对大豆分离蛋白(soy isolated protein,SPI)稳定的O/W乳状液的物理稳定性和流变特性的影响。通过测定14 d内添加SSPS和不同浓度的Fe2+的乳状液的稳定动力学指数(turbiscan stability index,TSI)、稳态流变、粒径大小及分布和Zeta-电位,确定其物理稳定性。结果表明,与SPI乳状液相比,添加SSPS后,SSPS-SPI乳状液的TSI显著降低(p<0.05),液滴的表面积平均直径(d3,2)和体积平均直径(d4,3)增加,粘度系数增加,Zeta-电位绝对值降低,表明SSPS增加了SPI乳状液的粘度,提高了乳状液的物理稳定性;添加0.1 mmol/L Fe2+后,乳状液的TSI最低,液滴的d3,2和d4,3分别为0.686、2.136 μm,为最小粒径,粘度增加,稳定性较好;随着Fe2+浓度的增加,乳状液的TSI显著增加(p<0.05),粒径增大,分布范围变宽,表明0.2~0.5 mmol/L的Fe2+降低了乳状液的物理稳定性。总之,SSPS和0.1 mmol/L Fe2+的添加,提高了SPI稳定的O/W乳状液的物理稳定性。  相似文献   

15.
There is a growing trend toward utilizing more label friendly ingredients in foods and beverages. In this study, we focused on the utilization of sucrose monopalmitate (SMP) as a non-ionic surfactant for stabilizing acidic beverages. Orange oil-in-water emulsions (5% (w/w) oil) stabilized by SMP were prepared using high pressure homogenization (pH 7). The minimum droplet diameter was around 130 nm, while the minimum mass ratio of SMP-to-oil required to produce small droplets was 0.1-to-1. Extensive droplet aggregation occurred when the pH of the emulsions was reduced from pH 7 to 3, with the mean particle diameter increasing from around 0.13 to 7.25 μm. This effect was attributed to an appreciable reduction in droplet charge when the pH was reduced (ζ ≈− 35 mV at pH 3 and − 2 mV at pH 3) thereby decreasing the electrostatic repulsion between droplets. It was proposed that the negative charge on the SMP-coated droplets was due to the presence of anionic substances within the droplets, such as palmitic acid (pKa ≈ 4.9). Palmitic acid may have been an impurity in the original ingredient or it may have been generated due to degradation of SMP during storage. The addition of anionic lyso-lecithin markedly improved the stability of the emulsions to droplet aggregation and phase separation at low pH, which was attributed to an increased electrostatic repulsion between the droplets. This study has important consequences for the formulation of acidic beverage emulsions with improved stability and physicochemical performance.  相似文献   

16.
Comprehension of hen egg yolk emulsifying properties remains incomplete because competition between its various emulsifiers (proteins and lipoproteins containing phospholipids) has not been clearly elucidated and colloidal interactions between yolk-stabilised oil droplets have not been documented. Recent studies emphasised the interest of the fractionation of yolk into plasma and granules to improve this comprehension. In the present study, we characterised, concurrently, emulsion properties (oil droplet size and stability against creaming) and interface attributes (interfacial concentrations of proteins and phospholipids, SDS-PAGE profiles of adsorbed proteins and zeta potential) in oil-in-water (O/W) emulsions prepared with yolk, plasma and granules. We observed these features at four physicochemical conditions (pH 3.0 or 7.0 and at 0.15 or 0.55 M NaCl). Emulsion properties in emulsions made with yolk or plasma varied similarly as a function of pH and NaCl concentration whereas granules emulsions exhibited distinct properties. Therefore the main contributors to yolk emulsifying properties are to be sought for among plasma constituents (proteinaceous or phospholipids). Since, in plasma emulsions, variations of emulsion stability against creaming correlated exclusively to variations of protein interfacial concentration, a driving contribution of the proteinaceous part of plasma, namely apo-LDL, was hypothesised. In the pH and ionic strength ranges studied, zeta potentials of the interfaces were low, excluding extended electrostatic repulsion between oil droplets. We deduced that steric repulsion is the main interaction opposing to droplet aggregation in food emulsions made with yolk.  相似文献   

17.
Z. Lu    H.P. Fleming    R.F. Mc  Feeters  S.A. Yoon 《Journal of food science》2002,67(3):1155-1161
ABSTRACT: :
The extent of glucose and fructose utilization during cucumber juice fermentation was affected differentially by the addition of 10 to 360 mM of selected anions (chloride, nitrate, sulfate, phosphate, acetate, lactate, and citrate) and cations (Na+, K+, NH4+, Ca2+, Mg2+, and Mn2+). Inorganic anions generally suppressed utilization of both sugars, particularly at higher concentrations. Acetate and lactate increased utilization of fructose, but not glucose, while citrate increased utilization of both sugars. Of the cations tested, 10-60 mM Mn+2 significantly (P < 0.05) increased utilization of both sugars, but higher concentrations reduced utilization, as compared with the control. Evidence indicates that brine composition can significantly influence sugar utilization during cucumber fermentation, and may be important in developing controlled fermentation strategies for brined cucumbers.  相似文献   

18.
ABSTRACT: An enzyme with α-L-rhamnosidase activity was purified to homogeneity from a culture filtrate of Aspergillus terreus after growth in a medium containing L-rhamnose as the sole carbon source. The biosynthesis of this enzyme was repressed by glucose. The enzyme had a molecular mass of 96 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point of 4.6 as determined by analytical isoelectric focusing. The pH and temperature optima for the enzyme were found to be 4.0 and 44 °C, respectively. Using p-nitrophenyl-α-L-rhamnopyranoside as a substrate, the enzyme exhibited Michaelis-Menten kinetics with KM and Vmax values of 0.17 mM and 84 U/mg, respectively. The enzyme was inhibited competitively by L-rhamnose (K1 2.5 mM). Divalent cations such as Ca2+ Mg2+ Zn2+ and Co2+ stimulated the a-L-rhamnosidase activity, whereas this was inhibited by Hg2+ and Cd2+. Ethanol (12% v/v) and glucose (21% w/v) decreased enzyme activity by approximately 20%, while this was not affected by SO2.  相似文献   

19.
Changes induced by addition of calcium chloride in particle size distribution and electrokinetic potential were determined in sodium caseinate/sodium alginate mixtures dissolved in water or acetate buffer at ambient temperature. Rheological properties of aqueous mixtures and respective oil-in-water emulsions (30% oil w/w) were evaluated using a low-stress rheometer. Stability and particle diameter of emulsions were measured. Caseinate and alginate solutions were negatively charged and showed negative electrokinetic potential; however values of mixtures were between those of the values for the individual hydrocolloids. When calcium ions were added the electrokinetic potential diminished while the negative charge was preserved. Aqueous mixtures of caseinate and alginate showed average particles size between of those of caseinate or alginate samples. We observed low viscosity values and Newtonian behavior for both caseinate (1 and 2%) and alginate (0.1%). Addition of 5 mM CaCl2 to alginate solutions induced shear-thinning behavior as well as the development of viscoelasticity. Both the viscosity and the elastic modulus of these polysaccharide solutions were attenuated by the presence of protein or dispersed oil in mixtures or emulsions, respectively. High average particle diameter of emulsions prepared was obtained (close to 10 μm), however, stability of emulsions was possible only with the addition of CaCl2 to the mixtures, in both water and acetate buffer. In these cases elastic behavior predominated to viscosity in the formation of emulsions, confirming the prevalence of aqueous phase rheology on emulsions.  相似文献   

20.
ABSTRACT: Studies were carried out on the effect of different brines containing high concentrations of calcium chloride (CaCl2, 0.8%w/w), magnesium chloride (MgCl2, 0.4%w/w), and potassium chloride (KCl, 50%) on the chemical (chloride and moisture contents), microbial (total viable counts, total coliforms, enterococci, and staphylococci), and sensory quality of salted cod. The brines were prepared from combinations of the Ca, Mg, and K ions and sodium chloride (NaCl) at pH 6.5 and 8.5. Additionally, 3 salts (one composed solely of NaCl, another commercial sea salt from the southern Europe and, finally, a natural salt from northern Europe) were also tested. Principal component analysis structured the chemical and microbiology data in 3 clusters: (1) an extreme cluster, formed by cod brined in the commercial sea salt, which achieved the highest microbiological counts, namely 4.1 log CFU/g on plate count agar (PCA) and 1250 coliforms/g; (2) an intermediate cluster composed of cod salted in brine containing 50% NaCl, 0.4% MgCl2, and 49.6% KCl (pH 6.5); and (3) a central cluster, including all the other treatments, which presented the lowest microbiological counts, namely 2.4 log CFU/g on PCA and 20 coliforms/g. Although the batches of the intermediate cluster presented slightly higher total viable and staphylococci counts than the central cluster, the presence of Mg and K ions improved the color of the salted product. In the assayed concentrations, CaCl2, MgCl2, and KCl can be used in the brining of cod without adversely affecting the microbiological and sensory quality of the salted cod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号