首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tenoumer impact structure is a small, well‐preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north‐central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact‐melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass‐rich breccia. Impact‐related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt‐breccia deposits, where they co‐occur with quartz PDFs, and also within melt‐free crystalline ejecta, in the absence of co‐occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.  相似文献   

2.
Abstract— Field studies and a shallow drilling program carried out in 1999 provided information about the thickness and distribution of suevite to the north of the Bosumtwi crater rim. Suevite occurrence there is known from an ?1.5 km2 area; its thickness is ≤15 m. The present suevite distribution is likely the result of differential erosion and does not reflect the initial areal extent of continuous Bosumtwi ejecta deposits. Here we discuss the petrographic characteristics of drill core samples of melt‐rich suevite. Macroscopic constituents of the suevites are melt bodies and crystalline and metasedimentary rock (granite, graywacke, phyllite, shale, schist, and possibly slate) clasts up to about 40 cm in size. Shock metamorphic effects in the clasts include multiple sets of planar deformation features (PDFs), diaplectic quartz and feldspar glasses, lechatelierite, and ballen quartz, besides biotite with kink bands. Basement rock clasts in the suevite represent all stages of shock metamorphism, ranging from samples without shock effects to completely shock‐melted material that is indicative of shock pressures up to ?60 GPa.  相似文献   

3.
Abstract— The impact origin of small craters in sedimentary rocks is often difficult to confirm because of the lack of characteristic shock metamorphic features. A case in point is the 3.1 Ma Aouelloul crater (Mauritania), 390 m in diameter, which is exposed in an area of Ordovician Oujeft and Zli sandstone. We studied several fractured sandstone samples from the crater rim for the possible presence of shock metamorphic effects. In thin section, a large fraction of the quartz grains show abundant subplanar and planar fractures. Many of the fractures are healed and are evident only as fluid inclusion trails. A few grains showed sets of narrow and densely spaced fluid inclusions trails in one (rarely two) orientations per grain, which could be possible remnants of planar deformation features (PDFs), although such an interpretation is not unambiguous. In contrast, an impact origin of the crater is confirmed by Re-Os isotope studies of the target sandstone and glass found around the crater rim, which show the presence of a distinct extraterrestrial component in the glass.  相似文献   

4.
Abstract– Although the meteorite impact origin of the Keurusselkä impact structure (central Finland) has been established on the basis of the occurrence of shatter cones, no detailed microscopic examination of the impactites from this structure has so far been made. Previous microscope investigations of in situ rocks did not yield any firm evidence of shock features (Raiskila et al. 2008; Kinnunen and Hietala 2009). We have carried out microscopic observations on petrographic thin sections from seven in situ shatter cone samples and report here the discovery of planar fractures (PFs) and planar deformation features (PDFs) in quartz and feldspar grains. The detection and characterization of microscopic shock metamorphic features in the investigated samples substantiates a meteorite impact origin for the Keurusselkä structure. The crystallographic orientations of 372 PDF sets in 276 quartz grains were measured, using a universal stage (U‐stage) microscope, for five of the seven distinct shatter cone samples. Based on our U‐stage results, we estimate that investigated shatter cone samples from the Keurusselkä structure have experienced peak shock pressures from approximately 2 GPa to slightly less than 20 GPa for the more heavily shocked samples. The decoration of most of the PDFs with fluid inclusions also indicates that these originally amorphous shock features were altered by postimpact processes. Finally, our field observations indicate that the exposed surface corresponds to the crater floor; it is, however, difficult to estimate the exact diameter of the structure and the precise amount of material that has been eroded since its formation.  相似文献   

5.
Abstract– The Siljan impact structure in Sweden is the largest confirmed impact structure in Western Europe. Despite this, the structure has been poorly studied in the past, and detailed studies of shock metamorphic features in the target lithologies are missing. Here, we present the results of a detailed systematic search for shock metamorphic features in quartz grains from 73 sampled localities at Siljan. At 21 localities from an area approximately 20 km in diameter located centrally in the structure, the orientations of 2851 planar deformation feature sets in 1179 quartz grains were measured. Observations of shatter cones outside of the zone with shocked quartz extend the total shocked area to approximately 30 km in diameter. The most strongly shocked samples, recording pressures of up to 20 GPa, occur at the very central part of the structure, and locally in these samples, higher pressures causing melting conditions in the affected rocks were reached. Pressures recorded in the studied samples decrease outwards from the center of the structure, forming roughly circular envelopes around the proposed shock center. Based on the distribution pattern of shocked quartz at Siljan, the original transient cavity can be estimated at approximately 32–38 km in diameter. After correcting for erosion, we conclude that the original rim to rim diameter of the Siljan crater was somewhere in the size range 50–90 km.  相似文献   

6.
Here we present a study of the abundance and orientation of planar deformation features (PDFs) in the Vakkejokk Breccia, a proposed lower Cambrian impact ejecta layer in the North‐Swedish Caledonides. The presence of PDFs is widely accepted as evidence for shock metamorphism associated with cosmic impact events and their presence confirms that the Vakkejokk Breccia is indeed the result of an impact. The breccia has previously been divided into four lithological subunits (from bottom to top), viz. lower polymict breccia (LPB), graded polymict breccia (GPB), top sandstone (TS), and top conglomerate (TC). Here we show that the LPB contains no shock metamorphic features, indicating that the material derives from just outside of the crater and represents low‐shock semi‐autochthonous bombarded strata. In the overlying, more fine‐grained GPB and TS, quartz grains with PDFs are relatively abundant (2–5% of the grain population), and with higher shock levels in the upper parts, suggesting that they have formed by reworking of more distal ejecta by resurge of water toward the crater in a marine setting. The absence of shocked quartz grains in the TC indicates that this unit represents later slumps associated with weathering and erosion of the protruding crater rim. Sparse shocked quartz grains (<0.2%) were also found in sandstone beds occurring at the same stratigraphic level as the Vakkejokk Breccia 15–20 km from the inferred crater site. It is currently unresolved whether the sandstone at these distal sites is related to the impact or just contains rare reworked quartz grains with PDFs.  相似文献   

7.
Abstract— The 3.4 km wide, so‐called Kgagodi Basin structure, which is centered at longitude 27°34.4′ E and latitude 22°28.6′ S in eastern Botswana, has been confirmed as a meteorite impact structure. This crater structure was first recognized through geophysical analysis; now, we confirm its impact origin by the recognition of shock metamorphosed material in samples from a drill core obtained close to the crater rim. The structure formed in Archean granitoid basement overlain and intruded by Karoo dolerite. The crater yielded a gravity model consistent with a simple bowl‐shape crater form. The drill core extends to a depth of 274 m and comprises crater fill sediments to a depth of 158 m. Impact breccia was recovered only between 158 and 165 m depth, below which locally brecciated basement granitoids grade into fractured and eventually undeformed crystalline basement, from ~250 m depth. Shock metamorphic effects were only found in granitoid clasts in the narrow breccia zone. This breccia is classified as suevitic impact breccia due to the presence of melt and glass fragments, at a very small abundance. The shocked grains are exclusively derived from granitoid target material. Shock effects include multiple sets of planar deformation features in quartz and feldspar; diaplectic quartz, and partially and completely isotropized felsic minerals, and rare melt fragments were encountered. Abundances of some siderophile elements and especially, Ir, in suevitic breccia samples are significantly elevated compared to the contents in the target rocks, which provides evidence for the presence of a small meteoritic component. Kgagodi is the first impact structure recognized in the region of the Kalahari Desert in southern Africa. Based on lithological and first palynological evidence, the age of the Kgagodi structure is tentatively assigned to the upper Cretaceous to early Tertiary interval. Thus, the crater fill has the potential to provide a long record of paleoclimatic conditions.  相似文献   

8.
Abstract– The 1.8 km‐diameter Xiuyan crater is an impact structure in northeastern China, exposed in a Proterozoic metamorphic rock complex. The major rocks of the crater are composed of granulite, hornblendite, gneiss, tremolite marble, and marble. The bottom at the center of the crater covers about 100 m thick lacustrine sediments underlain by 188 m thick crater‐fill breccia. A layer of polymict breccia composed of clasts of granulite, gneiss, hornblendite, and fragments of glass as well as clastic matrix, occurs near the base, in the depth interval from 260 to 295 m. An investigation in quartz from the polymict breccia in the crater‐fill units reveals abundant planar deformation features (PDFs). Quartz with multiple sets of PDFs is found in clasts of granulite that consist of mainly quartz and feldspar, and in fine‐grained matrix of the impact‐produced polymict breccia. A universal stage was used to measure the orientation of PDFs in 70 grains of quartz from five thin sections made from the clasts of granulite of polymict breccia recovered at the depth of 290 m. Forty‐four percent of the quartz grains contain three sets of PDFs, and another 40% contain two sets of PDFs. The most abundant PDFs are rhombohedron forms of , , and with frequency of 33.5, 22.3, and 9.6%, respectively. A predominant PDF form of in quartz suggests a shock pressure >20 GPa. The occurrence of PDFs in quartz from the polymict breccia provides crucial evidence for shock metamorphism of target rocks and confirms the impact origin of this crater, which thus appears to be the first confirmed impact crater in China.  相似文献   

9.
The Terny impact structure, located in central Ukraine, displays a variety of diagnostic indicators of shock metamorphism, including shatter cones, planar deformation features in quartz, diaplectic glass, selective melting of minerals, and whole rock melting. The structure has been modified by erosion and subsequently buried by recent sediments. Although there are no natural outcrops of the deformed basement rocks within the area, mining exploration has provided surface and subsurface access to the structure, exposing impact melt rocks, shocked parautochthonous target rocks, and allochthonous impact breccias, including impact melt‐bearing breccias similar to suevites observed at the Ries structure. We have collected and studied samples from surface and subsurface exposures to a depth of approximately 750 m below the surface. This analysis indicates the Terny crater is centered on geographic coordinates 48.13° N, 33.52° E. The center location and the distribution of shock pressures constrain the transient crater diameter to be no less than approximately 8.4 km. Using widely accepted morphometric scaling relations, we estimate the pre‐erosional rim diameter of Terny crater to be approximately 16–19 km, making it close in original size to the well‐preserved El'gygytgyn crater in Siberia. Comparison with El'gygytgyn yields useful insights into the original morphology of the Terny crater and indicates that the amount of erosion Terny experienced prior to burial probably does not exceed 320 m.  相似文献   

10.
Abstract— The Obolon impact structure, 18 km in diameter, is situated at the northeastern slope of the Ukrainian Shield near its margin with the Dnieper‐Donets Depression. The crater was formed in crystalline rocks of the Precambrian basement that are overlain by marine Carboniferous and continental Lower Triassic deposits. The post‐impact sediments comprise marine Middle Jurassic (Bajocian and Bathonian) and younger Mesozoic and Cenozoic deposits. Today the impact structure is buried beneath an about 300‐meter‐thick sedimentary rock sequence. Most information on the Obolon structure is derived from two boreholes in the western part of the crater. The lowest part of the section in the deepest borehole is composed by allogenic breccia of crystalline basement rocks overlain by clast‐rich impact melt rocks and suevites. Abundant shock metamorphic effects are planar deformation features (PDFs) in quartz and feldspars, kink bands in biotite, etc. Coesite and impact diamonds were found in clast‐rich impact melt rocks. Crater‐fill deposits are a series of sandstones and breccias with blocks of sedimentary rocks that are covered by a layer of crystalline rock breccia. Crystalline rock breccias, conglomeratic breccias, and sandstones with crystalline rock debris have been found in some boreholes around the Obolon impact structure to a distance of about 50 km from its center. Those deposits are always underlain by Lower Triassic continental red clay and overlain by Middle Jurassic marine clay. The K‐Ar age of impact melt glasses is 169 Ma, which corresponds to the Middle Jurassic (Bajocian) age. The composition of crater‐fill rocks within the crater and sediments outside the Obolon structure testify to its formation under submarine conditions.  相似文献   

11.
Abstract— The newly discovered Dhala structure, Madhya Pradesh State, India, is the eroded remnant of an impact structure with an estimated present‐day apparent diameter of about 11 km. It is located in the northwestern part of the Archean Bundelkhand craton. The pre‐impact country rocks are predominantly granitoids of ?2.5 Ga age, with minor 2.0–2.15 Ga mafic intrusive rocks, and they are overlain by post‐impact sediments of the presumably >1.7 Ga Vindhyan Supergroup. Thus, the age for this impact event is currently bracketed by these two sequences. The Dhala structure is asymmetrically disposed with respect to a central elevated area (CEA) of Vindhyan sediments. The CEA is surrounded by two prominent morphological rings comprising pre‐Vindhyan arenaceous‐argillaceous and partially rudaceous metasediments and monomict granitoid breccia, respectively. There are also scattered outcrops of impact melt breccia exposed towards the inner edge of the monomict breccia zone, occurring over a nearly 6 km long trend and with a maximum outcrop width of ?170 m. Many lithic and mineral clasts within the melt breccia exhibit diagnostic shock metamorphic features, including multiple sets of planar deformation features (PDFs) in quartz and feldspar, ballen‐textured quartz, occurrences of coesite, and feldspar with checkerboard texture. In addition, various thermal alteration textures have been found in clasts of initially superheated impact melt. The impact melt breccia also contains numerous fragments composed of partially devitrified impact melt that is mixed with unshocked as well as shock deformed quartz and feldspar clasts. The chemical compositions of the impact melt rock and the regionally occurring granitoids are similar. The Ir contents of various impact melt breccia samples are close to the detection limit (1–1.5 ppb) and do not provide evidence for the presence of a meteoritic component in the melt breccia. The presence of diagnostic shock features in mineral and lithic clasts in impact melt breccia confirm Dhala as an impact structure. At 11 km, Dhala is the largest impact structure currently known in the region between the Mediterranean and southeast Asia.  相似文献   

12.
Shock metamorphic features at the Saarijärvi (D > 2 km) and Söderfjärden (D = 6.5 km) structures in Finland have so far only been studied tentatively, although both are considered to be proven impact structures. This work presents the first detailed universal stage study of planar deformation features (PDFs), feather feature lamellae (FFL), and planar fractures (PFs) in quartz grains from a polymict impact breccia dike from Söderfjärden, and from sedimentary crater‐fill rocks from Saarijärvi. Planar microstructures, particularly PDFs, are very rare and poorly developed or preserved in Saarijärvi, whereas in Söderfjärden they are much more common and well defined. Miller–Bravais indices of the planar microstructures in both Saarijärvi and Söderfjärden are indicative of relatively low‐shock pressure but high shear conditions, only compatible with an impact origin for these structures. Although a Proterozoic age for Saarijärvi cannot be ruled out, the observations of shock features throughout the sedimentary crater‐fill sequence and a brecciated sedimentary dike below the crater floor are more consistent with a Lower Cambrian (or younger) impact age.  相似文献   

13.
Abstract— The Kärdla crater is a 4 km‐wide impact structure of Late Ordovician age located on Hiiumaa Island, Estonia. The 455 Ma‐old buried crater was formed in shallow seawater in Precambrian crystalline target rocks that were covered with sedimentary rocks. Basement and breccia samples from 13 drill cores were studied mineralogically, petrographically, and geochemically. Geochemical analyses of major and trace elements were performed on 90 samples from allochthonous breccias, sub‐crater and surrounding basement rocks. The breccia units do not include any melt rocks or suevites. The remarkably poorly mixed sedimentary and crystalline rocks were deposited separately within the allochthonous breccia suites of the crater. The most intensely shockmetamorphosed allochthonous granitoid crystalline‐derived breccia layers contain planar deformation features (PDFs) in quartz, indicating shock pressures of 20–35 GPa. An apparent K‐enrichment and Ca‐Na‐depletion of feldspar‐ and hornblende‐bearing rocks in the allochthonous breccia units and sub‐crater basement is interpreted to be the result of early stage alteration in an impact‐induced hydrothermal system. The chemical composition of the breccias shows no definite sign of an extraterrestrial contamination. By modeling of the different breccia units with HMX‐mixing, the indigenous component was determined. From the abundances of the siderophile elements (Cr, Co, Ni, Ir, and Au) in the breccia samples, no unambiguous evidence for the incorporation of a meteoritic component above about 0.1 wt% chondrite‐equivalent was found.  相似文献   

14.
Abstract— We propose the Sirente crater field to be the first discovered impact craters in Italy. They are located in the Sirente plain within the mountains of the Abruzzo region, central Italy. The craters are distributed in a field 450 m long and 400 m wide. This field consists of ?17 smaller craters close to a larger main crater. The main crater is located in the southern end of the crater field and is 140 m long and 115 m wide, measured rim‐to‐rim. It has a well‐developed, saddle‐shaped rim that rises at a maximum 2.2 m above the surrounding plain. Radiocarbon dating of the target surface preserved below the rim gave a calibrated age of formation at about a.d. 412 (1650 ± 40 radiocarbon years b.p.). This young age is consistent with the apparent little modification of the rim. The morphology of the main crater and its relation to a crater field strongly points to its origin by impact from a projectile that broke up during its passage through the atmosphere. Quartz is very rare in the target and no planar deformation features have been found so far. The rim material and the upper 4 m of the main crater infill are impregnated with ferric oxides, which gives a more reddish colour compared to the other sediments of the plain. Rusty crusts with high Fe and Mn content occur in the rim material, but have not been found in the plain's sediments. Some of these crusts can be separated by magnet, and have sporadic micron‐sized Ni‐rich granules. The main crater is in the size range of the craters with explosive dispersion of the projectile and has many features comparable to both large experimental and meteoritic impact craters formed in loose sediments. We suggest that this crater represents a rare example of well‐preserved, small impact crater formed in unconsolidated target materials.  相似文献   

15.
Abstract— The Vredefort Granophyre represents impact melt that was injected downward into fractures in the floor of the Vredefort impact structure, South Africa. This unit contains inclusions of country rock that were derived from different locations within the impact structure and are predominantly composed of quartzite, feldspathic quartzite, arkose, and granitic material with minor proportions of shale and epidiorite. Two of the least recrystallized inclusions contain quartz with single or multiple sets of planar deformation features. Quartz grains in other inclusions display a vermicular texture, which is reminiscent of checkerboard feldspar. Feldspars range from large, twinned crystals in some inclusions to fine‐grained aggregates that apparently are the product of decomposition of larger primary crystals. In rare inclusions, a mafic mineral, probably biotite or amphibole, has been transformed to very fine‐grained aggregates of secondary phases that include small euhedral crystals of Fe‐rich spinel. These data indicate that inclusions within the Vredefort Granophyre were exposed to shock pressures ranging from <5 to 8–30 GPa. Many of these inclusions contain small, rounded melt pockets composed of a groundmass of devitrified or metamorphosed glass containing microlites of a variety of minerals, including K‐feldspar, quartz, augite, low‐Ca pyroxene, and magnetite. The composition of this devitrified glass varies from inclusion to inclusion, but is generally consistent with a mixture of quartz and feldspar with minor proportions of mafic minerals. In the case of granitoid inclusions, melt pockets commonly occur at the boundaries between feldspar and quartz grains. In metasedimentary inclusions, some of these melt pockets contain remnants of partially melted feldspar grains. These melt pockets may have formed by eutectic melting caused by inclusion of these fragments in the hot (650 to 1610 °C) impact melt that crystallized to form the Vredefort Granophyre.  相似文献   

16.
Abstract– The petrographic investigation of a shocked, chalcedony‐, quartzine‐, and quartz‐bearing allochthonous chert nodule (probably Upper Cretaceous) recovered from surficial wadi gravels in the inner parts of the central uplift of the approximately 6 km in diameter Jebel Waqf as Suwwan impact structure, Jordan, reveals new potential shock indicators in microfibrous–spherulitic silica, in addition to well‐established shock‐metamorphic effects in coarser crystalline quartz. The microcrystalline chert groundmass exhibits a macroscopic dendritic and suborthogonal fracture pattern commonly associated with thin “recrystallization bands” that intersect the pre‐existing diagenetic chert fabric. Fibrous aggregates of quartzine spherulites in chalcedony‐quartzine‐quartz veinlets locally have a shattered appearance and show conspicuous “curved fractures” perpendicular to the quartzine fiber direction (and parallel to [0001]) that commonly trend subparallel to planar fractures (PFs) in neighboring shocked quartz. Quartz exhibits PFs, feather features (FFs), and mainly single sets of planar deformation features (PDFs) parallel to the basal plane (0001) (Brazil twins) and, rarely, additional PDFs parallel to {101¯3}. Shock petrography indicates shock pressures of ≥10 GPa and high shock‐induced differential stresses that affected the chert nodule. The internal crosscutting relationships of primary diagenetic and impact‐related deformational features together with shockpressure estimates suggest that the curved fractures across quartzine spherulites might represent specific (low‐ to medium‐pressure) shock‐metamorphic features, possibly in structural analogy to basal plane PFs in quartz. The dendritic–suborthogonal fractures in the microcrystalline chert groundmass and recrystallization bands are likely related to impact‐induced shear deformation and recrystallization, respectively, and cannot be considered as definite shock indicators.  相似文献   

17.
The Ramgarh structure is a morphological landmark in southeastern Rajasthan, India. Its 200 m high and 3.5–4 km wide annular collar has provoked many hypotheses regarding its origin, including impact. Here, we document planar deformation features, planar fractures, and feather features in quartz grains of the central part of the Ramgarh structure, which confirm its impact origin. The annular collar does not mark the crater rim but represents the outer part of a central uplift of an approximately 10 km diameter complex impact structure. The apparent crater rim is exposed as a low‐angle normal fault and can be traced as lineaments in remote sensing imagery. The central uplift shows a stratigraphic uplift of ~1000 m and is rectangular in shape. It is dissected by numerous faults that are co‐genetic with the formation of the central uplift. The central uplift has a bilateral symmetry along an SW‐NE axis, where a large strike‐slip fault documents a strong horizontal shear component. This direction corresponds to the assumed impact trajectory from the SW toward the NE. The uprange sector is characterized by concentric reverse faults, whereas radial faults dominate downrange. Sandstones of the central uplift are infiltrated by Fe‐oxides and suggest an impact‐induced hydrothermal mineralization overprint. The impact may have occurred into a shallow water environment as indicated by soft‐sediment deformation features, observed near the apparent crater rim, and the deposition of a diamictite layer above them. Gastropods embedded in the diamictite have Middle Jurassic age and may indicate the time of the impact.  相似文献   

18.
The Kamenetsk impact structure is a deeply eroded simple crater that formed in crystalline rocks of the Ukrainian Shield. This study presents structural, lithologic, and shock metamorphic evidence for an impact origin of the Kamenetsk structure, which was previously described as a paleovolcano. The Kamenetsk structure is an oval depression that is 1.0–1.2 km in diameter and 130 m deep. The structure is deeply eroded, and only the lower part of the sequence of lithic breccia has been preserved in the deepest part of the crater to recent time, while the predominant part of impact rocks and postimpact sediments was eroded. Manifestations of shock metamorphism of minerals, especially planar deformation features in quartz and feldspars, were determined by petrographic investigations of lithic breccia that allowed us to determine the impact origin of the Kamenetsk structure. The erosion of the crater and surrounding target to a minimal depth of 220 m preceded the deposition of the postimpact sediments. The time of the formation of the Kamenetsk structure is bracketed within a wide interval from 2.0 to 2.1 Ga, the age of the crystalline target rocks, to the Late Miocene age of the sediments overlaying the crater. The deep erosion of the structure suggests it is probably Paleozoic in age.  相似文献   

19.
Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock‐metamorphosed quartz‐bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block‐model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35–40 km and has since experienced up to ~2 km of differential erosion.  相似文献   

20.
Abstract– The Ritland structure is a newly discovered impact structure, which is located in southwestern Norway. The structure is the remnant of a simple crater 2.5 km in diameter and 350 m deep, which was excavated in Precambrian gneissic rocks. The crater was filled by sediments in Cambrian times and covered by thrust nappes of the Caledonian orogen in the Silurian–Devonian. Several succeeding events of uplift, erosion, and finally the Pleistocene glaciations, disclosed this well‐preserved structure. The erosion has exposed brecciated rocks of the original crater floor overlain by a thin layer of melt‐bearing rocks and postimpact crater‐filling breccias, sandstones, and shales. Quartz grains with planar deformation features occur frequently within the melt‐bearing unit, confirming the impact origin of the structure. The good exposures of infilling sediments have allowed a detailed reconstruction of the original crater morphology and its infilling history based on geological field mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号