首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lignin is an abundant and sustainable resource that exhibits numerous attractive functional properties as a reinforcing agent for benzoxazine-based composites, due to its stiffness, thermal stability, and high carbon content. However, the low quality of lignin particles dispersions associated with the weak particles-matrix interactions reduces the reinforcement capability. In this work, hybrid lignin/silica (NaLS/SiO2) nanoparticles were obtained from sodium lignosulfonate (NaLS) and tetraethylorthosilicate (TEOS) under basic conditions. The particles were characterized by transmission electron microscopy (TEM) confirming their spherical morphology and narrow nanometric-size distributions. The hybrid particles were incorporated into conventional benzoxazine (BA-a) and a difuran biobased benzoxazine (SA-dfda) to prepare nanocomposites with different mass compositions (3, 5, and 10 wt%). Morphological, mechanical, dynamo-mechanical, and thermal properties of the obtained composites were assessed. All the materials exhibited a homogenous filler dispersion that contributed to improve the reinforcement properties. Hybrid nanoparticles proved to be an interesting alternative as a filler in the benzoxazine matrix to prepare high-performance thermosetting composites.  相似文献   

2.
《先进技术聚合物》2018,29(5):1507-1517
Water‐induced mechanically adaptive rubber nanocomposites were prepared by mixing bacterial cellulose whiskers (BCWs) suspension with styrene‐butadiene rubber (SBR) latex, followed by evaporation method. The structure, morphology, dynamic mechanical properties, water stimuli‐responsive behavior, and biodegradability of SBR/BCWs nanocomposite films were investigated. The results showed that the hydrophilic whiskers had a significant reinforcement effect on the storage modulus of SBR matrix, which originated from the formation of a rigid three‐dimensional filler network within matrix by strong hydrogen bonding between whiskers. The SBR/BCWs nanocomposites showed pronounced water stimuli‐responsive behavior compared with neat SBR. The storage modulus of SBR/BCWs nanocomposite could be decreased by 99.2% after equilibrium water swelling. This remarkable water‐triggered modulus change is attributed to the disentanglement of BCWs network via competitive hydrogen bonding with water.  相似文献   

3.
Thermoplastic Elastomer Vulcanizates (TPEV) prepared by dynamic vulcanizing process, is a material which has both the properties of a vulcanized rubber (elasticity) and thermoplastics (processibility). TPEV is cost effective for its good processibility and eco-friendly for its recyclability. TPEV/layered silicate nanocomposites can give a greater advantage of weight reduction which is a key issue in automotive industry because of fuel efficiency. Applying TPEV/layered silicate nanocomposites, the amount of reinforcement mineral filler can be reduced greatly compared to general TPEV which is reinforced by talc or kaolin clay. The mechanical strengths of TPEV/layered silicate nanocomposites using small amounts of MMT is similar to those of general TPEV using larger amounts of general filler. Various evaluations such as degree of crosslinking, degree of filler dispersion (XRD and TEM), surface hardness and tensile properties were carried out for the TPEV/layered silicate nanocomposites.  相似文献   

4.
采用胶乳接枝插层法,引入单体,制备了天然橡胶蒙脱土聚丙烯酸丁酯纳米复合材料.X射线衍射(XRD)和透射电镜(TEM)结果表明,在单体丙烯酸丁酯(BA)的作用下,改性蒙脱土片层被进一步撑大,并在橡胶基体中以纳米级分散;动态粘弹谱(DMA)测定结果显示,该体系的玻璃化温度有所提高,且60℃时具有较低的tanδ值,说明具有较小的滚动阻力;物理机械性能测试表明该方法有效地实现了对天然橡胶的补强.  相似文献   

5.
Developing conductive networks in a polymer matrix with a low percolation threshold and excellent mechanical properties is desired for soft electronics applications. In this work, natural rubber (NR) functionalized with poly(methyl methacrylate) (PMMA) was prepared for strong interfacial interactions with multiwalled carbon nanotubes (MWCNT), resulting in excellent performance of the natural rubber nanocomposites. The MWCNT and methyl methacrylate functional groups gave good filler dispersion, conductivity and tensile properties. The filler network in the matrix was studied with microscopy and from its non-linear viscoelasticity. The Maier-Göritze approach revealed that MWCNT network formation was favored in the NR functionalized with PMMA, with reduced electrical and mechanical percolation thresholds. The obvious improvement in physical performance of MWCNT/methyl methacrylate functionalized natural rubber nanocomposites was caused by interfacial interactions and reduced filler agglomeration in the NR matrix. The modification of NR with poly(methyl methacrylate) and MWCNT filler was demonstrated as an effective pathway to enhance the mechanical and electrical properties of natural rubber nanocomposites.  相似文献   

6.
The preparation and characterization of polymer blends with structured natural rubber (NR)-based latex particles are presented. By a semicontinuous emulsion polymerization process, a natural rubber latex (prevulcanized or not) was coated with a shell of crosslinked polymethylmethacrylate (PMMA) or polystyrene (PS). Furthermore, core–shell latexes based on a natural rubber/crosslinked PS latex semi-interpenetrating network were synthesized in a batch process. These structured particles were incorporated as impact modifiers into a brittle polymer matrix using a Werner & Pfleiderer twin screw extruder. The mechanical properties of PS and PMMA blends with a series of the prepared latexes were investigated. In the case of PMMA blends, relatively simple core (NR)–shell (crosslinked PMMA) particles improved the mechanical properties of PMMA most effectively. An intermediate PS layer between the core and the shell or a natural rubber core with PS subinclusions allowed the E-modulus to be adjusted. The situation was different with the PS blends. Only core–shell particles based on NR-crosslinked PS latex semi-interpenetrating networks could effectively toughen PS. It appears that microdomains in the rubber phase allowed a modification of the crazing behavior. These inclusions were observed inside the NR particles by transmission electron microscopy. Transmission electron photomicrographs of PS and PMMA blends also revealed intact and well-dispersed particles. Scanning electron microscopy of fracture surfaces allowed us to distinguish PS blends reinforced with latex semi-interpenetrating network-based particles from blends with all other types of particles.  相似文献   

7.
A novel rubber composite of acrylonitrile–butadiene rubber (NBR) filled with anhydrous copper sulfate (CuSO4) particles was investigated. Dynamic mechanical analysis, differential scanning calorimetry, X‐ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of this novel CuSO4/NBR composite. The results indicated that the composite had wonderful mechanical properties, which profited from the in situ coordination crosslinking interactions between the nitrile groups (? CN) of NBR and solid CuSO4 particles. Scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and transmission electron microscopy results showed that CuSO4 particles played two roles, acting as both crosslink agents and reinforcing fillers in the matrix. The double actions of CuSO4 gave the CuSO4/NBR composites their excellent mechanical properties. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 571–576, 2007  相似文献   

8.
Nanocomposites containing natural rubber (NR) as matrix, epoxidized natural rubber (ENR) as compatibilizer and organophilic layered clay (organoclay) as filler were produced in an internal mixer and cured using a conventional sulphuric system. The effects of ENR with 25 (ENR 25) and 50 mol% epoxidation (ENR 50), respectively, were compared at 5 and 10 parts per hundred rubber (phr) concentrations. The organoclay content was fixed at 2 phr. Cure characteristics, clay dispersion, (thermo)mechanical properties of the nanocomposites were determined and discussed. Incorporation of ENR and organoclay strongly affected the parameters which could be derived from Monsanto MDR measurements. Faster cure and increased crosslink density were attributed to changes in the activation/crosslinking pathway which was, however, not studied in detail. The organoclay was mostly intercalated according to X-ray diffraction (XRD) and transmission electron microscopic (TEM) results. The best clay dispersion was achieved by adding ENR 50. This was reflected in the stiffness of the nanocomposites derived from both dynamic mechanical thermal analysis (DMTA) and tensile tests. The tensile and tear strengths of the ENR 50 containing nanocomposites were also superior to the ENR 25 compatibilized and uncompatibilized stocks.  相似文献   

9.
Layered double hydroxides (LDHs) based elastomer nanocomposites have been synthesized and characterized in terms of nanoparticle dispersion, mechanical properties and interfacial adhesion. Since LDH has basic hydroxyl groups on its surface, its potential as reinforcing filler in elastomers and in additionally a crosslinking agent in carboxylated elastomers has been investigated in details. For this purpose, two different elastomers having widely different polarities and functional groups (e.g., ethylene propylene diene terpolymer, i.e. EPDM and carboxylated nitrile rubber, i.e. XNBR) have been used as the matrix. The pristine LDH based on Mg and Al was modified with decane sulfonate by the regeneration method. The morphological analysis of the nanocomposites (done by X-ray diffraction analysis and electron microscopy) shows that in both matrices LDH particles are dispersed in three different forms, i.e. as primary particles, as exfoliated layers and as soft clusters formed by both of them. However, their relative proportion differs drastically in the two matrices. We have shown in this study that the LDH can significantly improve the mechanical properties in both the system. In XNBR/LDH nanocomposites containing no conventional metal oxide curative, this improvement is very prominent due to secondary interaction between LDH and XNBR matrix indicating that LDH can crosslink carboxalated elastomers. It is also observed that LDH particle promotes strain-induced crystallization in XNBR/LDH. The fracture surface analysis shows that in XNBR/LDH nanocomposite very stable polymer-filler interface is formed and tensile failure takes place through the matrix rather than through the interface. In case of EPDM/LDH nanocomposites the opposite is observed and the polymer matrix hardly wets the surface of the LDH particle.  相似文献   

10.
A novel kind of fluoroelastomer nanocomposites based on tube-like halloysite clay mineral were successfully prepared using a bis-phenol curing system, which resulted in prominent improvements in mechanical and dynamic mechanical properties and in the elevation as high as 30 K of the thermal decomposition temperature. Wide-angle X-ray scattering and transmission electron microscopy techniques were employed to assess the morphology developed in the nanocomposites, while stress strain diagrams were used to evaluate the mechanical properties. These nanocomposites were further characterized by moving die rheometer, dynamic mechanical properties and thermo-gravimetric analysis. Structure-properties relationship and the improvement of the mechanical, dynamic mechanical and thermal properties of fluoroelastomers are reported in the present study. Increasing amount of the filler reduced the curing efficiency of the bis-phenol curing system, which was evident from the rheometric and physical properties of the resulting composites. A sort of filler–filler interaction was perceived during the strain sweep analysis of the composites. The polymer–filler interaction was reflected in the improved mechanical and thermal properties which were the consequence of proper dispersion of the nanotubes in the polymer matrix; whereas the intercalation of macromolecular chains into the nanotubes was not reflected in the X-ray diffraction analysis.  相似文献   

11.
Styrene butadiene rubber (SBR) composites filled with fillers, such as modified kaolinite (MK), precipitated silica (PS), and the hybrid fillers containing MK and PS, were prepared by melt blending. The kaolinite sheets were finely dispersed in the SBR matrix around 20–80 nm in thickness and reached the nano-scale. The SBR composites with fillers exhibited excellent thermal stability compared to the pure SBR. The thermal stability of SBR composites was improved with the increasing of MK mass fraction. When MK hybridized with PS, kaolinite sheets were covered by the fine silica particles and the interface between filler particles and rubber matrix became more indistinct. SBR composite filled by hybrid fillers containing 40 phr MK and 10 phr PS became more difficult in decomposition and was better than that of 50 phr PS/SBR and 50 phr MK/SBR in thermal stability. Therefore, the hybridization of the fine silica particles with the kaolinite particles can effectively improve the thermal stability of SBR composites.  相似文献   

12.
硫酸铜含量对硫酸铜与丁腈橡胶之间配位交联反应的影响   总被引:1,自引:0,他引:1  
利用丁腈橡胶(NBR)的可配位侧基——腈基(—CN)与金属盐硫酸铜(CuSO4)的铜离子(Cu2+)之间的配位反应制备了一种配位交联CuSO4/NBR.影响该配位交联反应的因素众多,如热压温度、热压时间、增塑剂等等,考察了CuSO4含量对其的影响.通过X射线光电子能谱(XPS)、动态力学分析(DMA)、差示扫描量热分析(DSC)等手段对CuSO4与NBR之间的配位交联反应进行了分析,并对所得配位交联的CuSO4/NBR进行了交联密度及力学性能的测试.结果发现,随CuSO4含量的不断增加,CuSO4与NBR的配位交联程度逐渐增强,且所得配位交联CuSO4/NBR显示出从典型橡胶到韧性塑料再到脆性塑料的力学转变特性.另外,通过扫描电子显微镜(SEM)及X射线能谱仪(EDX)对材料的微观结构进行了分析,发现CuSO4在聚合物基体中不仅充当交联剂的角色,而且还起着增强填料的作用.  相似文献   

13.
Methyl methacrylate (MMA) can be grafted onto natural rubber (NR) in latex by gamma irradiation for improving the mechanical properties of the dry films. Physical blending of MMA-grafted NR latex with radiation vulcanized natural rubber latex (RVNRL) or simultaneous radiation grafting and crosslinking are found to be useful techniques for improving the properties of latex films. Moduli of the films are improved with increasing MMA content; however, tensile strength is reduced. High modulus without much reduction in tensile strength can be achieved if the MMA content is 50–60 parts per hundred rubber.  相似文献   

14.
Natural rubber obtained from a milky colloid (latex) extras mainly from the tree Hevea Brasiliensis is approximately 95% cis-polyisopren has important physical properties. Among its shortcomings are resistance to aging and thermal stability that limits its applications. The use of fillers in rubber is almost as old as the use of rubber itself. ZnO originally used for whiteness was the first “active” filler. In 1904 carbon black was discovered and since then became the most important powder used in rubber technology. Recently various mineral and organic nanoparticles are studied as reinforcements for elastomers in view -with minimum amounts – to achieve required properties. Natural rubber nanocomposites bring together mechanical and thermal properties from the rubber matrix and special characteristics of the nanoparticles.  相似文献   

15.
郑强 《高分子科学》2008,(2):145-152
The surface of calcium carbonate(CaCO_3)particles was modified with stearic acid(SA)and the chemical structures of the product were characterized by FT-IR analysis.The interaction between polydimethylsiloxane(PDMS)and CaCO_3 fillers with different surface character was investigated by means of dynamic rheological and bound rubber tests for uncured compounds and mechanical properties measurements for the corresponding vulcanites.The results of dynamic tests indicate that with the increase of SA mass fract...  相似文献   

16.
The sol‐gel reaction of tetraethoxysilane in natural rubber (NR) latex was conducted to produce in situ silica‐filled NR latex, followed by adding sulfur cross‐linking reagents to the latex in a liquid state. The latex was cast and subjected to sulfur curing to result in a unique morphology in the NR composite of a flexible film form. The contents of in situ silica filling were controlled up to 35 parts per one hundred rubber by weight. The silica was locally dispersed around rubber particles to give a filler network. This characteristic morphology brought about the composite of good dynamic mechanical properties. Synchrotron X‐ray absorption near‐edge structure spectroscopy suggested that the sulfidic linkages of the sulfur cross‐linked composites were polysulfidic, Sx (x ≥ 2), and a fraction of shorter polysulfidic linkages became larger with the increase of in situ silica. The present observations will be of use for developing a novel in situ silica‐filled NR composite prepared in NR latex via liquid‐phase soft processing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Effects of pH on mechanical properties as well as morphological studies of sol–gel derived in situ silica in polyvinyl chloride-50% epoxidized natural rubber (PVC-ENR50) nanocomposites are reported. In particular, a range of acid concentrations was investigated. These nanocomposites were prepared by solution casting technique and tetraethoxysilane (TEOS) was used as the silica precursor. The prepared nanocomposites were characterized using tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile test indicated that the highest mechanical strength was at 30% TEOS added for the nanocomposite prepared at pH 2.0. At pH 1.0 and 1.5 the maximum tensile strength reading was at 20% TEOS added with value of 24.3 and 24.5 MPa, respectively. SEM and TEM revealed the dispersion of silica particles in the polymer matrix. For nanocomposites prepared at pH 1.0 and 1.5, the silica particles were finely dispersed with the average size of 60 nm until 20% TEOS added. Meanwhile for nanocomposite prepared at pH 2.0, silica particles were homogenously distributed in the polymer matrix with average diameter of 30 nm until 30% TEOS and agglomerated after 30% TEOS loading.  相似文献   

18.
《先进技术聚合物》2018,29(6):1661-1669
Recently, carbon nanofibers have become an innovative reinforcing filler that has drawn increased attention from researchers. In this work, the reinforcement of acrylonitrile butadiene rubber (NBR) with carbon nanofibers (CNFs) was studied to determine the potential of carbon nanofibers as reinforcing filler in rubber technology. Furthermore, the performance of NBR compounds filled with carbon nanofibers was compared with the composites containing carbon black characterized by spherical particle type. Filler dispersion in elastomer matrix plays an essential role in polymer reinforcement, so we also analyzed the influence of dispersing agents on the performance of NBR composites. We applied several types of dispersing agents: anionic, cationic, nonionic, and ionic liquids. The fillers were characterized by dibutylphtalate absorption analysis, aggregate size, and rheological properties of filler suspensions. The vulcanization kinetics of rubber compounds, crosslink density, mechanical properties, hysteresis, and conductive properties of vulcanizates were also investigated. Moreover, scanning electron microscopy images were used to determine the filler dispersion in the elastomer matrix. The incorporation of the carbon nanofibers has a superior influence on the tensile strength of NBR compared with the samples containing carbon black. It was observed that addition of studied dispersing agents affected the performance of NBR/CNF and NBR/carbon black materials. Especially, the application of nonylphenyl poly(ethylene glycol) ether and 1‐butyl‐3‐methylimidazolium tetrafluoroborate contributed to enhanced mechanical properties and electrical conductivity of NBR/CNF composites.  相似文献   

19.
Methacrylic acid (MAA) was used as in situ surface modifier to improve the interface interaction between nano‐CaCO3 particle and ethylene–propylene–diene monomer (EPDM) matrix, and hence the mechanical properties of nano‐CaCO3‐filled EPDM vulcanizates. The results showed that the incorporation of MAA improved the filler–matrix interaction, which was proved by Fourier transformation infrared spectrometer (FTIR), Kraus equation, crosslink density determination, and scanning electron microscope (SEM). The formation of carboxylate and the participation of MAA in the crosslinking of EPDM indicated the strong filler–matrix interaction from the aspect of chemical reaction. The results of Kraus equation showed that the presence of MAA enhanced the reinforcement extent of nano‐CaCO3 on EPDM vulcanizates. Crosslink density determination proved the formation of the ionic crosslinks in EPDM vulcanizates with the existence of MAA. The filler particles on tensile fracture were embedded in the matrix and could not be observed obviously, indicating that a strong interfacial interaction between the filler and the matrix had been achieved with the incorporation of MAA. Meanwhile, the presence of MAA remarkably increased the modulus and tensile strength of the vulcanizates, without negative effect on the high elongation at break. Furthermore, the ionic bond was thought to be formed only on filler surface because of the absolute deficiency of MAA, which resulted in the possible structure where filler particles were considered as crosslink points. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1226–1236, 2006  相似文献   

20.
A new magnetic polymer nanocomposite based on Fe3O4 nanoparticles and nature rubber was prepared by the in situ latex method. This process was fast, versatile, reliable, safe, environmentally friendly, and inexpensive. The magnetorheological effect and mechanical properties of magnetic polymer nanocomposites were investigated in detail. The tensile strength of magnetic polymer nanocomposites without other reinforcing fillers was about 14.6 MPa. At the same time, the relative and absolute magnetorheological effect was about 365.0% and 3.64 MPa, respectively, which were almost 10 times with respect to other magnetic polymer nanocomposites based on nature rubber. Furthermore, the relationships between microstructure and mechanical behavior of magnetic polymer nanocomposites were simulated and discussed by the numerical treatment of a new theoretical model associated with finite element analysis for explaining the micro‐mechanism of magnetic polymer nanocomposites with high performance. The work did not only provide a universal route for the rational design and preparation of magnetic polymer nanocomposites with simultaneously high magnetic sensitivity and mechanical properties for various applications but also propose a new method to improve dispersion of magnetic particles in nature rubber for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号